CTP431- Music and Audio Computing Course Introduction

Graduate School of Culture Technology KAIST Juhan Nam

Who We Are

- Instructor: Juhan Nam (남주한)
 - Assistant Professor in GSCT, KAIST
 - Music and Audio Computing Lab: <u>http://mac.kaist.ac.kr</u>
- TA: Soonbeum Choi (최순범)
 - M.S. Student in GSCT, KAIST

For fun: <u>https://www.youtube.com/watch?v=G2Rhh_4GZmU</u>

Music Technology!

 A set of technologies that have changed the way that people are engaged in music as composer, performer and listener

Music Instrument and Performance

Cristofori's FortePiano (1722)

Steinway Model D (1884 -)

Music Instrument and Performance

Music Composition

ter qui nexabantini a forriribus inituiti do languerini un et qui nexabantini a forriribus inituiti di suene batt et

Gregorian Chant

Xenakis "Pithoprakta"

Music Composition

- MIDI-based Notation
- Compose music by algorithms
 - By rules or learning

MIDI (Piano roll) & Step Sequencer

Audio Programming (Max)

Automatic Composition (Jukedeck)

Music Production

Recording in the early 20th century

Multi-track recorders

Music Production

- DAW: recording, editing, processing and mixing
 - Digital audio effects

Digital Audio Workstation (DAW)

Music Listening

Phonograph

LP

Cassette Tape

Record Shop

Music Listening

- MP3, streaming
- Music search and recommendation, Internet Radio

Smartphone

Online Music Services

Shazam (Music Search)

Music Communication Framework

Music Communication Framework (Today)

Course Goals

- Understanding theoretical backgrounds in music technology today
 - Acoustics / Psychoacoustic
 - Digital Representations
 - Digital Audio
 - Spectrogram
 - MIDI
 - Algorithms
 - Digital Filters and Audio Effects
 - Sound Analysis and Synthesis
 - Interface
 - Visualization
 - Interaction Design

Course Goals

- Practicing with sound examples and code
 - Collecting sounds by recording or searching on Internet
 - Analyzing, modifying and synthesizing sounds
 - Use of Audio Tools
 - Audacity, Adobe Audition (free on campus network)
 - Programming
 - HTML/CSS/Javascript and Web Audio
 - Matlab / Python (TBD)

Why Web Audio?

- HTML5 standard
- Contain a number of audio signal processing components used in modern DAWs
- Easy to integrate with other multimedia components (e.g. WebGL)
- Free and no installation
- Platform-independent (but browser-dependent)
- Slow but keep being improved
- Many more ...

Why Web Audio?

New GitHub repositories

Course Information

- Course webpage
 - <u>http://mac.kaist.ac.kr/~juhan/ctp431/</u>
 - Basic course info, schedule and resources
- KLMS
 - Announcement
 - Question and Answers
 - Homework
 - Grading

Grading

- Assignments: 40%
 - Javascript programming using web audio
- Midterm: 20%
 - Paper exam focusing on theories
- Final Project: 40%
 - Proposal / Presentation / Submission (by sharing on the web using Github)

Pre-requisites

- Basic literacy
 - Programming language: variable, control, loop, function, class
 - Signal processing: meaning of x, y, t and f, Fourier transform (hopefully...)
 - Music: basic music theory
- HTML/CSS/Javascript: desired but not required