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Introduction
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ü  Instrument:	
ü  Composer:	
ü  Key:	
ü Melody		

	
	
ü  Transcrip7on	–	Music	nota7on	
ü  Genre:	Classical		
ü Mood:	Melancholy,	Sad,	…		

-	ELO	“ADer	all”	
-	Radiohead	“Exit	Music”	

Chopin		
Piano	

E-minor	



Music Information Retrieval (MIR)

§  Information in Music
–  Factual: track, artist, years
–  Acoustic: loudness, pitch, timbre
–  Symbolic: Instrument, melody, rhythm, chords, structure  
–  Semantic: genre, mood, user preference

§  Area of research that aims to infer various types of 
information from music data
–  Make computer understand music as human does
–  Provide intelligent solutions to enhance human musical activities
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MIR Tasks

§  Audio fingerprinting 
§  Cover song detection
§  Music transcription: melody, notes, tempo, chords
§  Segmentation, structure, alignment
§  Similarity-based retrieval, playlists, recommendation
§  Classification: genre, mood, tags, …
§  Query by humming
§  Source separation: vocal removal
§  Symbolic MIR: score retrieval or harmony analysis
§  Optical Music Recognition (OMR) 

MIREX: http://www.music-ir.org/mirex/wiki/MIREX_HOME
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MIR Research Disciplines

§  Digital Signal Processing
§  Acoustics
§  Music theory
§  Machine Learning
§  Natural language processing / Computer vision
§  Psychology
§  Human-Computer Interaction 
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Application: Music Search

§  Query by music
–  Search a single unique song identified by 

the query
–  Audio fingerprint 
–  Applied to movies, TV and ads, too

§  Query by humming
–  Sing with humming and find closest matches
–  Melody match
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Application: Music Recommendation

§  Personalized Radio
–  Generate Playlist 
–  Based on user data, similarity and context
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iTunes	Radio	 Pandora	



Application: Score Following

§  Listen to performance and track the notes
–  Example: JKU, Tonara
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Application: Score Following

§  The Piano Music Companion (2013) 
–  Along with song identification
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Application: Automatic Accompaniment

§  Score following + Interactive Performance
–  Examples:  IRCAM’s Antefesco, Sonation’s Cadenza
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Application: Entertainment / Education

§  Focus on performance evaluation
–  Learning musical instrument
–  Examples: Ovelin’s Yousician, MakeMusic’s Smartmusic, 

Ubisoft’s RockSmith, RockProdigy
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Application: Music Production 

§  Sound Sample search
–  Imagine Research’s MediaMind: search sound effect sample for 

media production (e.g. film, drama)
–  Izotope’s Breaktweaker: search similar timbre of drum sounds 
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Application: Music Composition

§  Automatic Song writing
–  Automatic arrangement
–  Example: MSR’s Songsmith
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CASE STUDY: Music Recommendation
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Backgrounds

§  Music record market 
–  Offline à Online music services
–  CD à MP3 à Streaming audio

§  Scale and diversity of music contents
–  Commercial music tracks

•  Spotify: 30M+ songs (2015)
•  Bugs music: 4.1M+ songs (2015)

–  User contents 
•  YouTube: 300h+ video uploaded per min (2015)
•  SoundCloud: 12h+ audio uploaded per minute (2014)

–  TV, cables and online media
•  Music program, concert, music videos, audition, …  
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Backgrounds

§  Connection with human data 
–  Number of users

•  Spotify: +24M active users (as of Jan, 2014)
•  YouTube: +1B unique users’ visit each month (as of Dec, 2014)

–  Personal data
•  Play history, rate, personal music library 
•  Profile: age, occupation, … 

–  Social data
•  The majority of online services can be logged in via SNS
•  Friends, followers
•  Daily posting, blog (reviews), comments 
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Challenges

§  There are too many choices of music contents

§  How can we find music more easily or in a human-friendly way?
–  Searching music with various queries (e.g. text, humming, audio 

tracks)
–  Recommendation based on user data (e.g. play history, rating, 

location)

§  We need to extract semantic or musical information from audio 
tracks, and match them to the query or user data
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Genre,	Mood,		
Instrument,		

Song	characteris7cs	

Query	word,		
Play	history,	Rate		
Profile,	Loca7on	

Discovery/Familiarity		

Users	Music	



Current Approaches

§  Manual Curation
§  Human Expert Analysis 
§  Collaborative Filtering
§  Content-based Analysis (by computers) 
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Manual Curation

§  Playlist generation by music experts (or 
users)
–  Traditional: AM/FM radio
–  The majority of current music services are 

based on this approach

§  Advantages
–  Effective for usage-based music services 

(workout, study, driving or prenatal 
education)

–  Good for music discovery
–  Often with story-telling  

§  Limitations
–  No personalization
–  Not scalable

19[www.soribada.com]	



Human Expert Analysis

§  Pandora: music genome project (1999) 
–  Musicologists analyze a song for about 450 musical attributes in 

various categories
–  Big success as a music service  

§  Advantages
–  High-quality analysis
–  Good for music discovery 

§  Limitations
–  Expensive: take 20-30 minutes for a song to be analyzed
–  Not scalable : only for commercial tracks ?
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Collaborative Filtering (CF)

§  Basic idea

§  Formation
–  Matrix factorization (or matrix completion) problem
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Person	A:	I	like	songs	A,	B,	C	and	D.	
Person	B:	I	like	songs	A,	B,	C	and	E.	
Person	A:	Really?	You	should	check	out	song	D.	
Person	B:	Wow,	you	also	should	check	out	song	E.		

Juhan	

Gangnam	Style	
Juhan’s	latent	vector	

Gangnam	Style’s	latent	
vector	xu

ys
pus = xu

T ys

Song	
Preference	

qu1u2 = xu1
T xu2

User	Similarity	

rs1s2 = ys1
T ys2

Song	Similarity	



Collaborative Filtering

§  Advantages
–  Capture semantics of music in the aspect of human 
–  Enable personalized recommendation (by nature)

§  Limitations
–  The cold start problem: what if a song was never played by 

anyone?
–  Popularity bias: likely to recommend (already) well-known songs 

or songs from the same musician or album 
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Collaborative Filtering

§  Bad examples

23

Can	you	find	songs		
similar	to	this	
musician?	

These	songs	are	
already	what	I	
know	well	!	

[Oord	et.	al,	2013]	



Content-Based Analysis: Music Auto-tagging

§  Google has music service as part of Google play
–  Their main features “Instant mix”, which automatically generates a 

playlist based on user’s music collections or play history 
§  They do CF but also make use of audio content. How?
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Fast	Company,		July,	2013		



Content-Based Analysis: Music Auto-tagging
§  An intelligent approach that makes computers listen to 

music and predict descriptive words (i.e. tags) from audio 
tracks
–  Features: MFCC, Chroma,…
–  Algorithms: GMM, SVM, Neural Networks 
–  Tags: genre, mood, instrument, voice quality, usage

§  Basic Framework

2525	
“Metal”	

“Jazz”	

“Classical”	

Algorithms	Audio	Files	 Audio	Features	



Example of Auto-tagging
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This	is	a			[																				]		song	that	is		[																	],	[														]	and	[														].		It	
features	[																					]	and	[																								]	vocal.	It	is	a	song	with		[															]	and	
[												]		that	you	might	like	to	listen	to	while		[														].	

This	is	a		[	very	danceable	]		song	that	is		[	arousing/awakening	],	[	exci5ng/
thrilling	]	and	[	happy	].		It	features	[	strong	]	and	[	fast	tempo	]	vocal.	It	is	a	song	
with		[	high	energy	]	and	[	high	beat	]		that	you	might	like	to	listen	to	while	[	at	a	
party	].	

This	is	a		[	pop	]		song	that	is		[	happy	],	[	carefree/lighthearted	]	and	[	light/
playful	].		It	features	[	high-pitched	]	vocal	and	[	altered	with	effects	]	vocal.	It	is	
a	song	with		[	posi5ve	feeling	]	that	you	might	like	to	listen	to	while	[	at	a	party	].	

James	Brown	–	Give	it	up	or	turn	it	a	loose	

Cardigans	-	Lovefool	



Text-based Music Retrieval by Auto-tagging

§  Sort the probability of the query tag and choose top-N 
songs
–  Like text-based Google search 

§  We also can compute similarity between songs using the 
estimated tag probabilities
–  E.g. cosine distance between two tag probability vectors
–  Applicable to query by audio 
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Query	word:	“Female	Lead	Vocals”	

Top	5	ranked	songs	

Norah	Jones	–	Don’t	know	why	

Dido	–	Here	with	me	

Sheryl	Crow	–	I	shall	believe	

No	doubt	–	Simple	kind	of	like	

Carpenters	–	Rainy	days	and	Mondays	



Content-based Music Recommendation 

§  Blending audio and user data
–  Replace the text-based tags with the latent vector of a song
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Audio	Track	of	“Gangnam	Style”	

Matrix	factoriza7on	from	collabora7ve	filtering	

[Oord	et.	al,	2013]	

“user”	

“song”	
“Gangnam	Style’s		
latent	vector	



Music Retrieval Results
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Collabora7ve	Filtering	only	 Collabora7ve	Filtering		
+	Audio	Content	

[Oord	et.	al,	2013]	



Content-Based Analysis: Music Auto-tagging

§  Advantages
–  Free of cold-start and popularity bias
–  Highly scalable: using high-performance computing
–  Works for music in other media or user content as well
–  Can be combined with other approaches

§  Limitations
–  Some tags are unpredictable: indy, idol, …
–  Hard to measure music quality (or level of performance), 

especially for user contents
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CASE STUDY: Score Following
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Music Score Following 

§  Tracking played notes while listening to the music
–  Temporally align different representations or renditions of music
–  Audio to Audio, Audio to Score (or MIDI)



Music Score Following

§  Extracting Chroma Features
–  Capture harmonic (or tonal) characteristics of music

33

CENS	:	Normalized	Chroma	Features	(Muller,	2005)	

MIDI	

Lisitsa	
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Music Score Following

§  Computing (Dis)similarity Matrix



Music Score Following
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Local	Similarity	 Accumulated	Similarity	

§  Computing the Shortest Path using Dynamic Time Warping



Score Following Demo


