CTP 431 Music and Audio Computing

Sound Synthesis

Graduate School of Culture Technology (GSCT) Juhan Nam

Outlines

- Brief history of sound synthesis
- Additive Synthesis
- Subtractive Synthesis
 - Analog synthesizers
- Nonlinear Synthesis
 - Ring modulation / Frequency modulation
 - Wave-shaping
- Sample-based Synthesis

Brief History

- Telharmonium (Cahill, 1897)
 - Room-size additive synthesizer using electro-magnetic "tone wheels"
 - Transmitted through telephone lines (subscription only!)
 - Sound like organ: evolved into Hammond B3 organ (drawbars)
 - <u>https://www.youtube.com/watch?v=PPIbXl81Rs0</u>
- Theremin (Léon Theremin, 1928)
 - Two metal antennas recognize the relative position of hands by detecting the change of electro-magnetic fields
 - Each of them controls amplitude and pitch of a tone
 - <u>https://www.youtube.com/watch?v=w5qf9O6c20o</u>
 - <u>https://www.youtube.com/watch?v=pSzTPGINa5U</u>

Brief History

- Music Concrete (Pierre Schaeffer, 1948)
 - Creating sounds by splicing the pieces of tapes where sounds are recorded: sampling-based synthesis
 - Related to musical composition
 - <u>https://www.youtube.com/watch?v=c4ea0sBrw6M</u>
 - Mellotron (1963): <u>https://www.youtube.com/watch?v=HdkixaxjZCM</u>
- RCA Synthesizer: Mark II (1957)
 - First programmable synthesizer
 - Room-size and off-line processing as a synthesizer and a sequencer
 - <u>https://www.youtube.com/watch?v=rgN_VzEIZ11</u>
- Moog Synthesizers (Moog, 1964)
 - Mini-moog (1971): the first popular synthesizer
 - "Switched-On-Bach" by Wendy Carlos
 - <u>https://www.youtube.com/watch?v=usl_TvIFtG0</u>

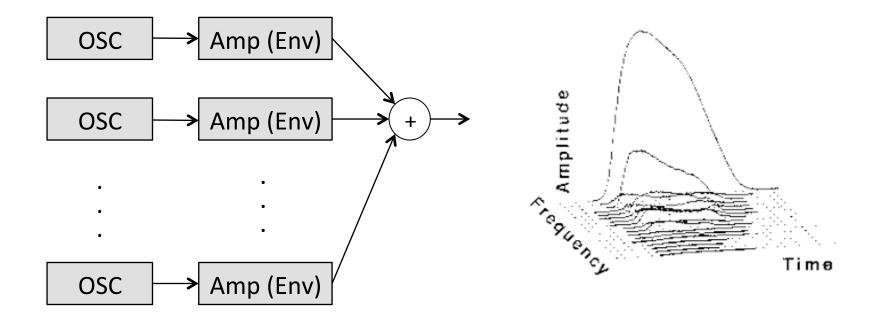
Brief History

- Yamaha DX7 (1983)
 - FM synthesis, the first commercially successful synthesizer
 - Electronic piano sounds in 80's pop music
- Fairlight CMI (1979)
 - The first sampling-based digital synthesizer
 - <u>https://www.youtube.com/watch?v=iOIPCpSmhRM</u>
- Kurzweil K250 (1983)
 - The first synthesizer that faithfully reproduced an acoustic grand piano
- Yamaha VL-1 (1994)
 - The first commercially available physical-modeling synthesizer

Sound Synthesis Techniques

- Categories
 - Additive synthesis
 - Subtractive synthesis
 - Non-linear: modulation / wave-shaping
 - Sample-based synthesis
 - Physical modeling

	Memory (Storage)	Programmability (by # of parameters)	Reproducibility of natural sounds	Interpretability of parameters	Computation power	
Additive	**	****	****	****	****	
Subtractive	*	***	**	***	**	
Non-linear	*	***	**	**	**	
Sample-base	****	*	****	N/A	* ~ ***	
Physical model	al model *** **		****	****	*** ~ *****	

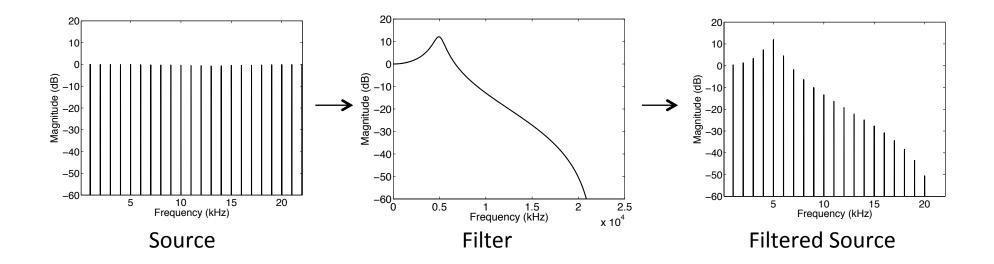


Additive Synthesis

Synthesize sounds by adding multiple sine oscillators

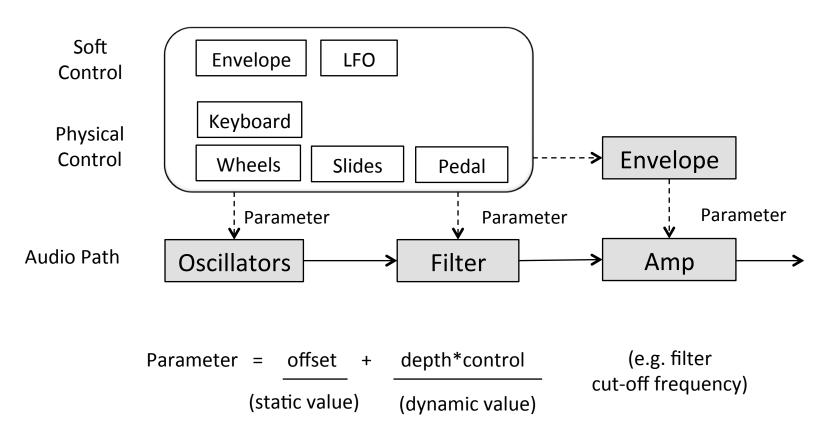
- Also called Fourier synthesis

Sound Examples


- Web Audio Demo
 - <u>http://femurdesign.com/theremin/</u>
 - <u>http://www.venlabsla.com/x/additive/additive.html</u>
- Examples (instruments)
 - Kurzweil K150
 - https://soundcloud.com/rosst/sets/kurzweil-k150-fs-additive
 - Kawai K5, K5000
 - Hammond Organ

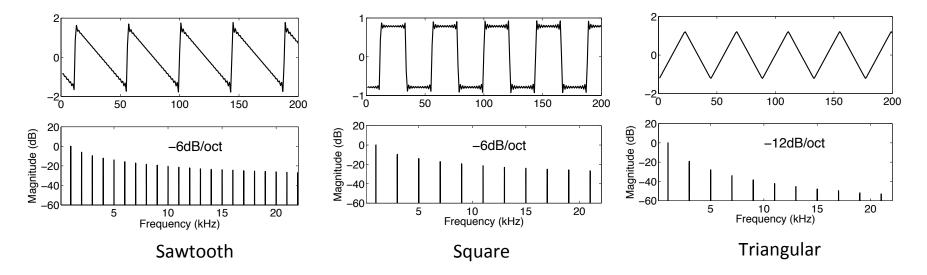
Subtractive Synthesis

- Synthesize sounds by filtering wide-band oscillators
 - Source-Filter model
 - Examples
 - Analog Synthesizers: oscillators + resonant lowpass filters
 - Voice Synthesizers: glottal pulse train + formant filters



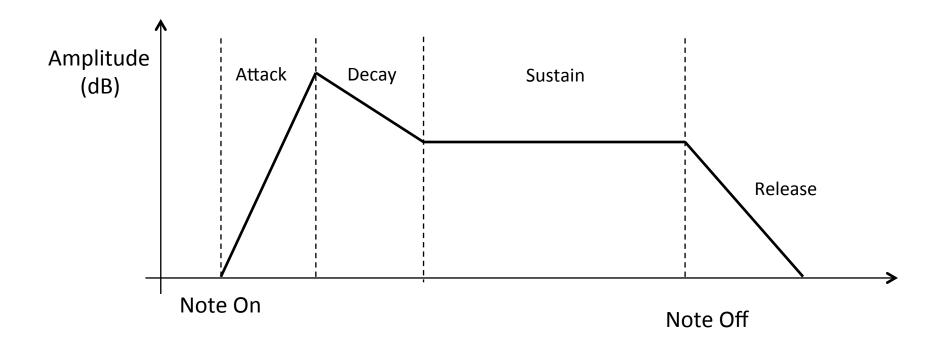
Subtractive Synthesis

Moog Synthesizer



Oscillators

Classic waveforms


- Modulation
 - Pulse width modulation
 - Hard-sync
 - More rich harmonics

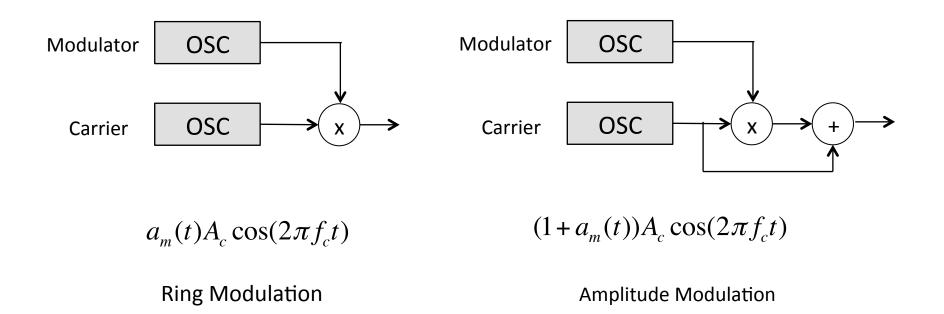
Amp Envelop Generator

- Amplitude envelope generation
 - ADSR curve: attack, decay, sustain and release
 - Each state has a pair of time and target level

Examples

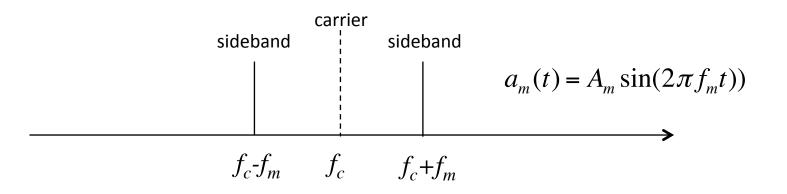
- Web Audio Demos
 - <u>http://www.google.com/doodles/robert-moogs-78th-birthday</u>
 - <u>http://webaudiodemos.appspot.com/midi-synth/index.html</u>
 - <u>http://aikelab.net/websynth/</u>
 - <u>http://nicroto.github.io/viktor/</u>
- Example Sounds
 - SuperSaw
 - Leads
 - Pad
 - MoogBass
 - 8-Bit sounds: <u>https://www.youtube.com/watch?v=tf0-Rrm9dI0</u>
 - TR-808: <u>https://www.youtube.com/watch?v=YeZZk2czG1c</u>

Modulation Synthesis


- Modulation is originally from communication theory
 - Carrier: channel signal, e.g., radio or TV channel
 - Modulator: information signal, e.g., voice, video
- Decreasing the frequency of carrier to hearing range can be used to synthesize sound
- Types of modulation synthesis
 - Amplitude modulation (or ring modulation)
 - Frequency modulation
- Modulation is non-linear processing
 - Generate new sinusoidal components

Ring Modulation / Amplitude Modulation

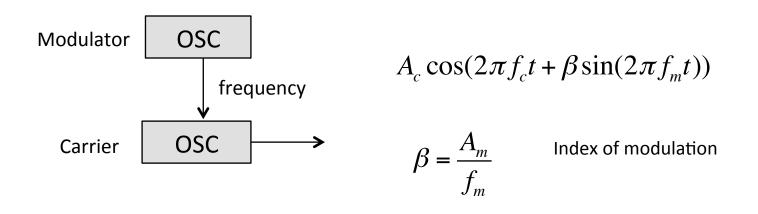
- Change the amplitude of one source with another source
 - Slow change: tremolo
 - Fast change: generate a new tone



Ring Modulation / Amplitude Modulation

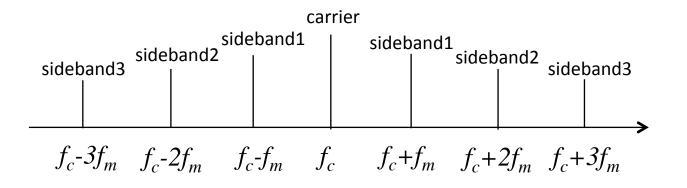
- Frequency domain
 - Expressed in terms of its sideband frequencies
 - The sum and difference of the two frequencies are obtained according to trigonometric identity
 - If the modulator is a non-sinusoidal tone, a mirrored-spectrum with regard to the carrier frequency is obtained

Examples


- Tone generation
 - SawtoothOsc x SineOsc
 - <u>https://www.youtube.com/watch?v=yw7_WQmrzuk</u>
- Ring modulation is often used as an audio effect
 - <u>http://webaudio.prototyping.bbc.co.uk/ring-modulator/</u>

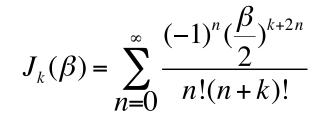
Frequency Modulation

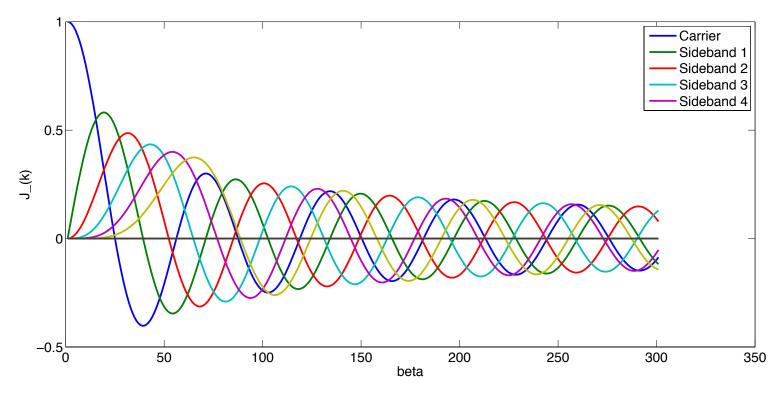
- Change the frequency of one source with another source
 - Slow change: vibrato
 - Fast change: generate a new (and rich) tone
 - Invented by John Chowning in 1973 \rightarrow Yamaha DX7



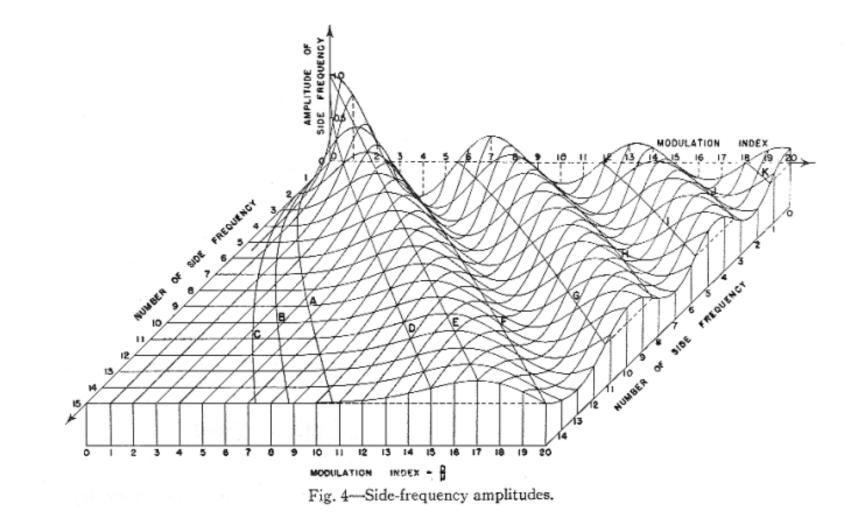
Frequency Modulation

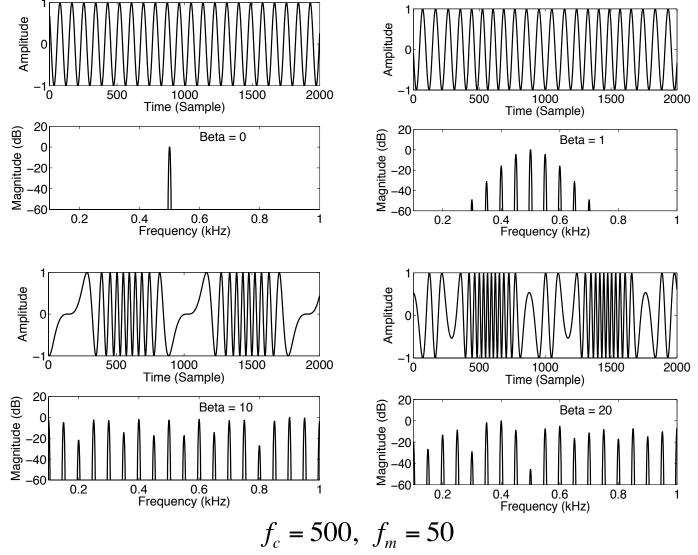
- Frequency Domain
 - Expressed in terms of its sideband frequencies
 - Their amplitudes are determined by the Bessel function
 - The sidebands below 0 Hz or above the Nyquist frequency are folded


$$y(t) = A_c \sum_{k=-\infty}^{k=-\infty} J_k(\beta) \cos(2\pi (f_c + kf_m)t)$$



Bessel Function




Bessel Function

The Effect of Modulation Index

"Algorithms" in DX7

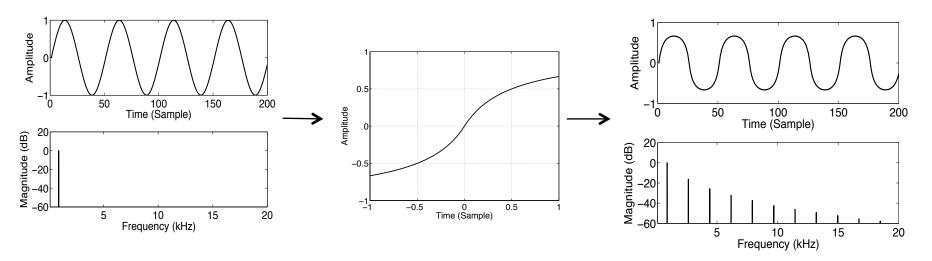
erse di						in the second			X	
1	<u>i</u> : : : : : : : : : : : : : : : : : : :	ų,	ġ, fi	, I .	vi 4		~ \$-	t.	N	ļ
ð tr	\$.	77	9 9 9 9	.				trail is		2.7
			ALGORITHM	FEEDBACK	EFO WAVE	SPEED	DELAY	PND	AND	SYNC
0 4	4 5 5	6 0	7 7	8 8	and the second se	10 0	11 .	12 0		
	MODE PORTAMENT	OUSSANDO D	TIME		EDIT REGALL	VOICE INIT				BATTER
ENEN			KEYBOARD L	EVEL SCAUNG		KEYBOARD	OPERATOR	Harris Land Constant	PITCH EG	
DETU		LEVEL	BREAK		DEPTH	KEYBOARD RATE SCALING	CUTPUT	SENSITIVITY	RATE	LEVEL
20	л <mark>21</mark> к	22 0	23 M	24 N	25 ¢	26 -	27 o	28 *	29 *	30
	AS RANGE	PITCH ROL	AMPLITUDE	EG BIAS	RANGE BREATH CON	PITCH THEL	AMPLITUDE	EG BIAS	RANGE AFTER TOUC	PITCH

http://www.audiocentralmagazine.com/yamaha-dx-7-riparliamo-di-fm-e-non-solo-seconda-parte/yamaha-dx7-algorithms/

Examples

- Web Audio Demo
 - <u>http://www.taktech.org/takm/WebFMSynth/</u>

- Sound Examples
 - Bell
 - Wood
 - Brass
 - Electric Piano
 - Vibraphone



Non-linear Synthesis (wave-shaping)

- Generate a rich sound spectrum from a sinusoid using nonlinear transfer functions (also called "distortion synthesis")
- Examples of transfer function: y = f(x)
 - $y = 1.5x' 0.5x'^3$ - y = x'/(1+|x'|) x'=gx: g correspond to the "gain knob" of the distortion
 - $-y = \sin(x')$
 - Chebyshev polynomial: $T_{k+1}(x) = 2xT_k(x)-T_{k-1}(x)$

$$T_0(x)=1, T_1(x)=x,$$

 $T_2(x)=2x^2-1, T_2(x)=4x^3-3x$

Sample-based Synthesis

- The majority of digital sound and music synthesis today is accomplished via the playback of stored waveforms
 - Media production: sound effects, narration, prompts
 - Digital devices: ringtone, sound alert
 - Musical Instruments
 - Native Instrument Kontakt5: 43+ GB (1000+ instruments)
 - Synthogy Ivory II Piano: 77GB+ (Steinway D Grand,)

Foley (filmmaking)

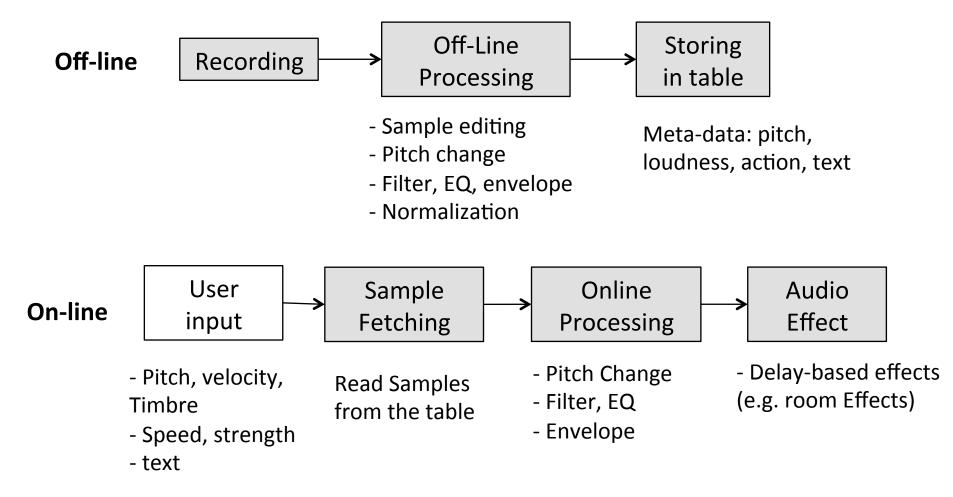
KVI2.

Ringtone Do Not Disturb OFF Vibration Alert > Notifications Ringtones Ringtone General Marimba (Default) Sounds Alarm 🙀 Brightness & Wallpaper Ascending Privacy Bark 🖒 iCloud **Bell Towe** Mail, Contacts, Calendars Rhuos

Synthogy Ivory II Piano

Ringtones

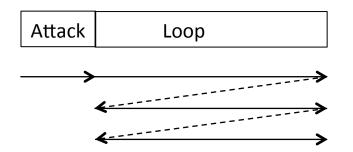
Why Don't We Just Use Samples?


- Advantages
 - Reproduce realistic sounds (needless to say)
 - Less use of CPU
- Limitations
 - Not flexible: repeat the same sound again, not expressive
 - Can require a great deal of storage
 - Need high-quality recording
 - Limited to real-world sounds
- Better ways
 - Modify samples based on existing sound processing techniques
 - Much richer spectrum of sounds
 - Trade-off: CPU, memory and programmability

Sampling Synthesis

Overview

Wavetable Synthesis


- Playback samples stored in tables
 - Multi-sampling: choose different sample tables depending on input conditions such pitch and loudness
 - Velocity switching
- Reducing sample tables in musical synthesizers
 - Sample looping: reduce the size of tables
 - Pitch shifting by re-sampling: avoid sampling every single pitch
 - Filtering: avoid sampling every single loudness
 - e.g. low-pass filtering for soft input

Sample Looping

- Find a periodic segment and repeat it seamlessly during playback
 - Particularly for instruments with forced oscillation (e.g. woodwind)
 - Usually taken from the sustained part of a pitched musical note

Playback using looping

- It is not easy to find an exactly clean loop
 - The amplitude envelopes often decays or modulated:
 - e.g. piano, guitar, violin
 - Period in sample is not integer \rightarrow non-integer-size sample table?

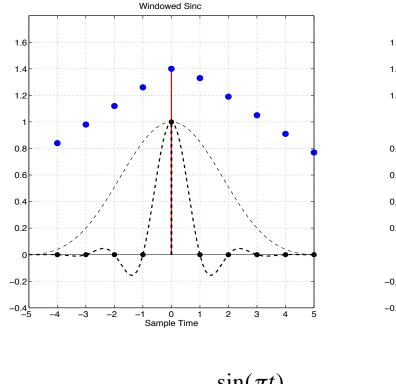
Sample Looping

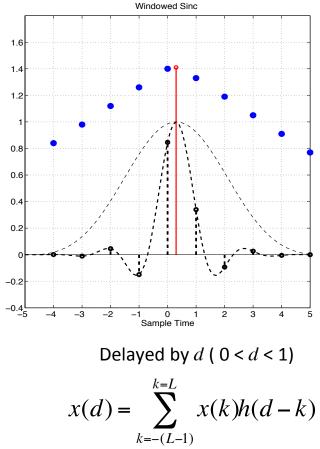
- Solutions
 - Decaying amplitude: normalize the amplitude
 - Compute the envelope and multiply it inverse
 - Then, multiply the envelope back later
 - Non-integer period in sample
 - Use multiple periods for the loop such that the total period is close to integers
 - * e.g. Period = 100.2 samples \rightarrow 5*Period = 501 samples
 - Amplitude modulation
 - Crossfade between the end of loop and the beginning of loop meet
- Automatic loop search
 - Pitch detection and zero-crossing detection: c.f. samplers

Concatenative Synthesis

- Splicing sample segments based on input information
 - Typically done in speech synthesis: unit selection
- Sample size depends on applications
 - ARS: limited expression and context-dependent
 - word or phrase level
 - TTS: unlimited expression and context-independent
 - phone or di-phone (phone-to-phone transition) level

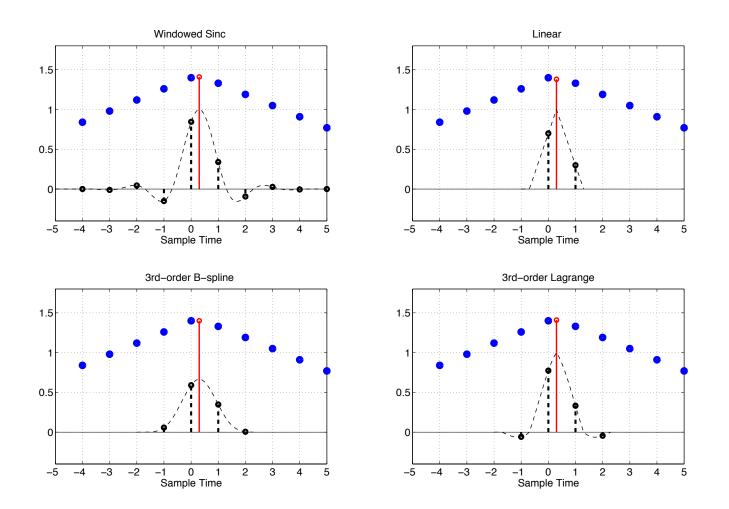
Pitch Shifting (Re-sampling)


- Change pitch by adjusting the playback rate given sampling rate
 - Corresponding to sliding tapes on the magnetic header in a variable speed (c.f. music concrete)
 - Down-sampling: pitch goes up and time shrinks ("chipmunk effect")
 - Up-sampling: pitch goes down and time expands
- Interpolation from discrete samples
 - Convolution with interpolation filters (e.g. windowed sinc)
 - Need to avoid aliasing for down sampling
 - Narrowing the bandwidth of the lowpass filter → the shape of sinc function gets wider
 - "resample.m" in Matlab

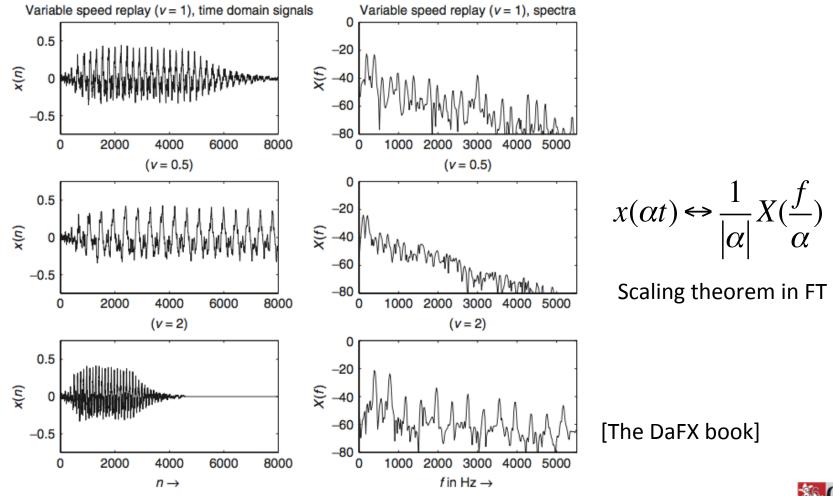


Pitch Shifting (Re-sampling)

Interpolation with the windowed sinc function


$$h(t) = w(t)\operatorname{sinc}(t) = w(t)\frac{\sin(\pi t)}{\pi t}$$

Types of Interpolators



They are all lowpass filters with different transition bands. In general, interpolators with higher orders have narrower transition bands.

Pitch Shifting (Re-sampling)

Change in time and spectrum by the pitch shifting

