CTP 431 Music and Audio Computing

Delay-based Audio Effect

Graduate School of Culture Technology (GSCT) Juhan Nam

Introduction

- Types of delay-based audio effect
 - Delay
 - Chorus
 - Flanger
 - Reverberation

Perception of Time Delay

- The 30 Hz transition
 - Given repeated click sound (e.g. impulse train):
 - If the rate is less than 30Hz, they are perceived as discrete events.
 - As the rate is above 30 Hz, they are perceive as a tone
 - Demo: <u>http://auditoryneuroscience.com/?q=pitch/click_train</u>
- Feedback comb filter: y(n) = x(n) + r y(n-M)
 - Models sound propagation and reflection with energy loss
 - If M < fs/30: generate a tone
 - E.g. Karplus-strong model of tone generation (https://en.wikipedia.org/wiki/Karplus%E2%80%93Strong_string_synthesis)
 - If M > fs/30: generate a looped delay
 - E.g. Delay effect

Delay

- Delay effect
 - Generate repetitive loop delay
 - Feedback coefficient controls the amount of delayed input
 - Can be extended to stereo signals such that the delay output is "ping-ponged" between the left and right channels
 - The delay length is often synchronized with music tempo
 - The delayline is implemented as a "circular buffer"

Chorus

- Chorus effect
 - Gives the illusion of multiple voices playing in unison
 - By summing detuned copies of the input
 - Low frequency oscillators are used to modulate the position of output tops → This causes the pitch of the input (resampling!)

Flanger

- Flanger effect
 - Originally generated by summing the output of two un-locked tape machines while varying their sync (used to be called "reel-flanging")
 - Emulated by summing one static tap and variable tap in the delay line
 - Feed-forward combine filter where harmonic notches vary over frequency.
 - LFO is often synchronized with music tempo

Reverberation

- Natural acoustic phenomenon that occurs when sound sources are played in a room
 - Thousands of echoes are generated as sound sources are reflected against wall, ceiling and floors
 - Reflected sounds are delayed, attenuated and low-pass filtered: high-frequency component decay faster
 - The patterns of myriads of echoes are determined by the volume and geometry of room and materials on the surfaces

Reverberation

- Room reverberation is characterized by its impulse response (IR)
 - E.g. when a balloon pop is used as a sound source
- The room IR is composed of three parts
 - Direct path
 - Early reflections
 - Late-field reverberation: high echo density
- RT60
 - The time that it takes the reverberation to decay by 60 dB from its peak amplitude

Artificial Reverberation

- Mechanical reverb
 - Use metal plate and spring
 - Plate reverb: <u>https://www.youtube.com/watch?v=XJ5OFpvX5Vs</u>
- Delayline-based reverb
 - Early reflections: feed-forward delayline
 - Late-field reverb: allpass/comb filter, feedback delay networks (FDN)
 - "Programmable" reverberation
- Convolution reverb
 - Measure the impulse response of a room
 - Do convolution input with the measured IR

Delay-based Reverb

AllPass filter / Comb filter (when one tap is absent)

Feedback Delay Networks

- The lengths of delaylines are chosen such that their greatest common factors is small (e.g. prime numbers)

- The mixing matrix is chosen to be unitary (orthonormal)

Convolution Reverb

Measuring impulse responses

- If the input is a unit impulse, SNR is low
- Instead, we use specially designed input signals
 - Golay code, allpass chirp or sine sweep: their magnitude responses are all flat but the signals are spread over time
- The impulse response is obtained using its inverse signal or inverse discrete Fourier transform

Convolution Reverb

