CTP 431 Music and Audio Computing

Sound Processing and Digital Filters

Graduate School of Culture Technology (GSCT) Juhan Nam

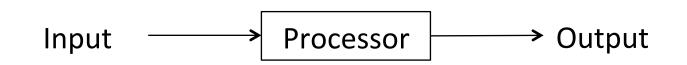
Outlines

- Introduction: Sound Processing
- Linear Time-Invariant Digital Filter
 - Impulse response
 - Convolution
- Digital Filters
 - FIR Filters
 - IIR Filters
- Frequency Response
- Transfer functions
 - Z-transform
 - Pole-Zero Analysis
- Bi-quad Filters

Introduction: Sound Processing

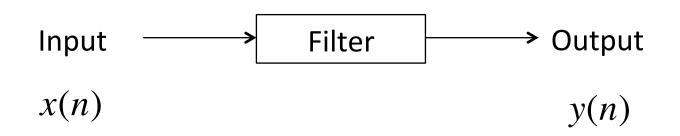
- Sounds captured on computers are processed in various ways
 - Sample editing: cut, copy, paste
 - Amplitude: gain, fade in/out, automation curve, compressor
 - Timbre: lowpass/highpass filters, EQ, distortion, modulation
 - Spatial effect: delay, reverberation
 - Pitch: pitch shifting (e.g. auto-tune)
 - Time stretching
 - Noise suppression

Sound Processing



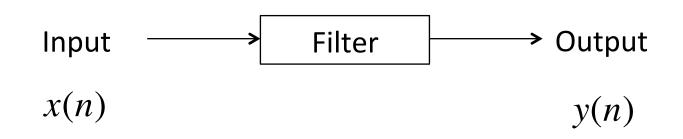
- Linear processing
 - No sinusoidal components are introduced by the processing
 - Only the amplitude and phase of sinusoidal components of the input change
 - Filters (lowpass, highpass, bandpass, ...), EQ
 - Delay-based audio effect: delay, chorus, flanger, reverberation
- Non-linear processing
 - New sinusoidal components are generated
 - Compressor, distortion, clipping
 - Pitch shifting, ring modulation, ...

Linear Time-Invariant (LTI) Digital Filters



- What linear filters can do
 - Amplifying the input (or the past output): e.g. y(n) = ax(n)
 - Delaying the input (or the past output): e.g. y(n) = x(n-1)
 - Summing them all: y(n) = ax(n) + x(n-1)
- "Easy-to-understand" definition

LTI Digital Filters (Formal)

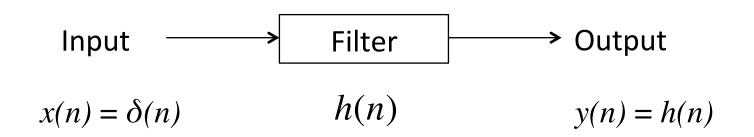


- Linearity
 - Homogeneity: if $x(n) \rightarrow y(n)$, $ax(n) \rightarrow ay(n)$
 - Superposition: if $x_1(n) \rightarrow y_1(n)$ and $x_2(n) \rightarrow y_2(n)$, $x_1(n) + x_2(n) \rightarrow y_1(n) + y_2(n)$
- Time-Invariance
 - If $x(n) \rightarrow y(n)$, $x(n-N) \rightarrow y(n-N)$ for any N
 - The system does not change its behavior with time.
 - In practice, most systems do change over time but not quickly

Example: Simple LTI Digital Filters

- Moving-average filter
 - y(n) = 0.5x(n) + 0.5x(n-1)
 - Low-pass
- Differentiator
 - y(n) = 0.5x(n) 0.5x(n-1)
 - High-pass
- Feed-forward comb filter
 - y(n) = x(n) + x(n-M) where M is, say,100
 - Renders harmonically distributed peaks and valleys

Impulse Response



- Characterize filters as a number sequence
- Obtained when x(n) is a unit impulse - $x(n) = \delta(n) = [1, 0, 0, 0, ...] \rightarrow y(n) = h(n)$
- Can be measured from a linear system (black-box approach)
 - If you excite the linear system with an impulse, you can record the output and use that to determine exactly what the system response would be to any arbitrary input.

Convolution

The output of LTI systems is represented by convolution operation between the input *x*(*n*) and impulse response *h*(*n*)

$$y(n) = x(n) * h(n) = \sum_{i=0}^{M} x(i)h(n-i)$$

- Deriving convolution
 - The input is decomposed into a time-ordered set of weighted impulse

•
$$x(n) = [x_{0}, x_{1}, x_{2}, x_{3}, \dots, x_{M}]$$

= $x_{0}\delta(n) + x_{1}\delta(n-1) + x_{2}\delta(n-2) + x_{3}\delta(n-3) + \dots + x_{M}\delta(n-M)$

- By the linearity and time-invariance
 - $y(n) = x_0 h(n) + x_1 h(n-1) + x_2 h(n-2) + x_3 h(n-3) + \dots + x_M h(n-M)$

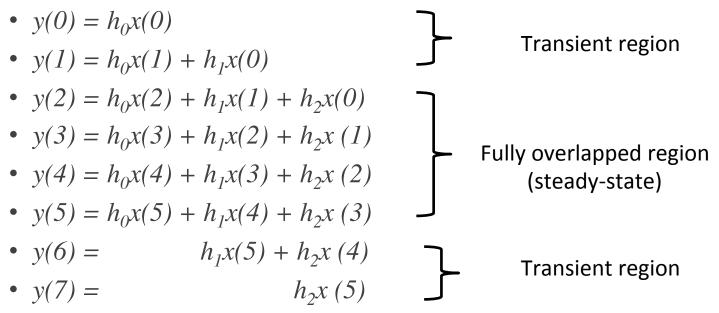
Convolution in Practice

From the commutative law

$$y(n) = x(n) * h(n) = \sum_{i=0}^{M} x(i)h(n-i) = \sum_{i=0}^{M} x(n-i)h(i)$$

$$- y(n) = h_0 x(n) + h_1 x(n-1) + h_2 x(n-2) + h_3 x(n-3) + \dots + h_M x(n-M)$$

- For example: x(n) (n=0,1,2,3,4,5), $h(n) = [h_0 h_1 h_2]$



Convolution in Practice

- If the length of x(n) is M and the length of h(n) is N, the length of y(n) is M+N-1
- Computation Complexity
 - In Big-O notation, it requires M x N multiplications
 - If N is a large number, it is quite expensive to compute
 - We can compute convolution in frequency domain, which is much cheaper than the time-domain approach when the impulse response is long (e.g. reverberation or head-related transfer functions)

Properties of LTI systems

Commutative

$$x(n) * h_1(n) * h_2(n) = x(n) * h_2(n) * h_1(n)$$

Associative

$$\{x(n) * h_1(n)\} * h_2(n) = x(n) * \{h_1(n) * h_2(n)\}$$

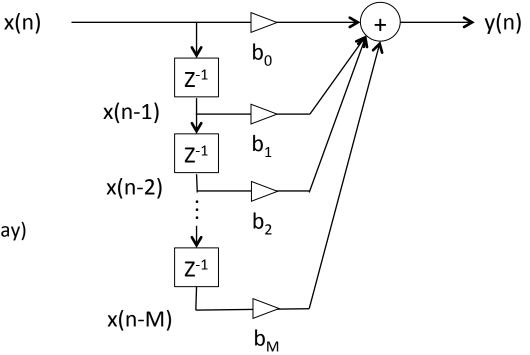
Distributive

 $x(n) * h_1(n) + x(n) * h_2(n) = x(n) * \{h_1(n) + h_2(n)\}$

FIR Filters

- The output is formed from input and its past input
 - They have finite impulse responses (FIR)
 - Convolution with the finite impulse responses

$$y(n) = b_0 x(n) + b_1 x(n-1) + b_2 x(n-2) + \dots + b_M x(n-M)$$

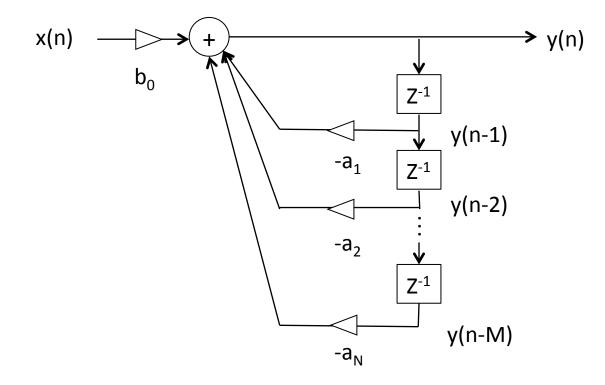


"Delay operator" (a unit sample of delay)

IIR Filters

- The output can be also formed by input and past outputs
 - The feedback creates an infinite impulse response!
 - Convolution with the infinite impulse responses

$$y(n) = b_0 x(n) - a_1 y(n-1) - a_2 y(n-2) - \dots - b_N y(n-N)$$



IIR Filters

- The infinite impulse response
 - For example: y(n) = x(n) + ry(n-1)
 - y(0) = x(0)
 - y(1) = x(1) + ry(0) = x(1) + rx(0)
 - $y(2) = x(2) + ry(1) = x(2) + rx(1) + r^2x(0)$
 - $y(3) = x(3) + ry(2) = x(3) + rx(2) + r^2x(1) + r^3x(0)$
 - $y(4) = x(4) + ry(3) = x(4) + rx(3) + r^2x(2) + r^3x(1) + r^4x(0)$

→
$$h(n) = [1 r r^2 r^3 r^4 r^5 r^6 ...]$$

- Stability issue!
 - If r < 1, the filter becomes stable
 - If *r* =1, the filter oscillates
 - If r > 1, the filter becomes unstable
- The impulse response is long but, in practice, it is finite (for r < 1) because the level goes below the the quantization noise floor

Example: IIR Filters

- Leaky Integrator
 - y(n) = x(n) + ry(n-1)
 - -r is a slightly less than 1. (1-r) is the "leak"
 - Lowpass filtering
- "Reson" filter
 - $y(n) = x(n) + 2r\cos\theta y(n-1) r^2 y(n-2)$
 - *r* controls the resonance and θ controls its frequency
 - Resonance: 0 (low resonance) < r < 1 (low resonance)
 - Cut-off frequency (f_c): $\theta = 2\pi f_c/f_s$ (f_s : sampling rate)
 - Low-pass/band-pass/high-pass filtering depending on additional zeros
- Feed-back comb filter
 - y(n) = x(n) + ry(n-M)
 - Renders a harmonic tone

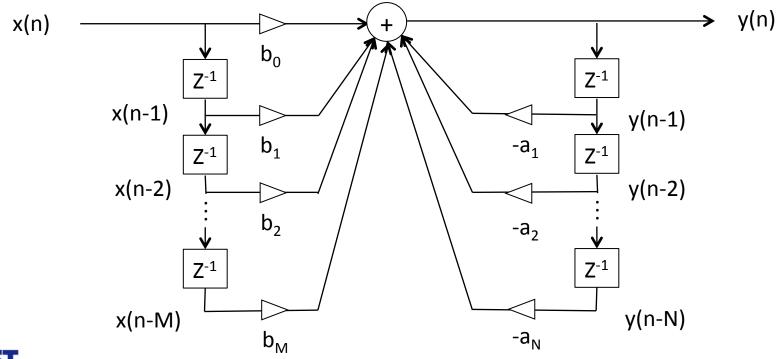
General Filter Form

The general form of digital Filters

$$y(n) = b_0 x(n) + b_1 x(n-1) + b_2 x(n-2) + \dots + b_M x(n-M)$$

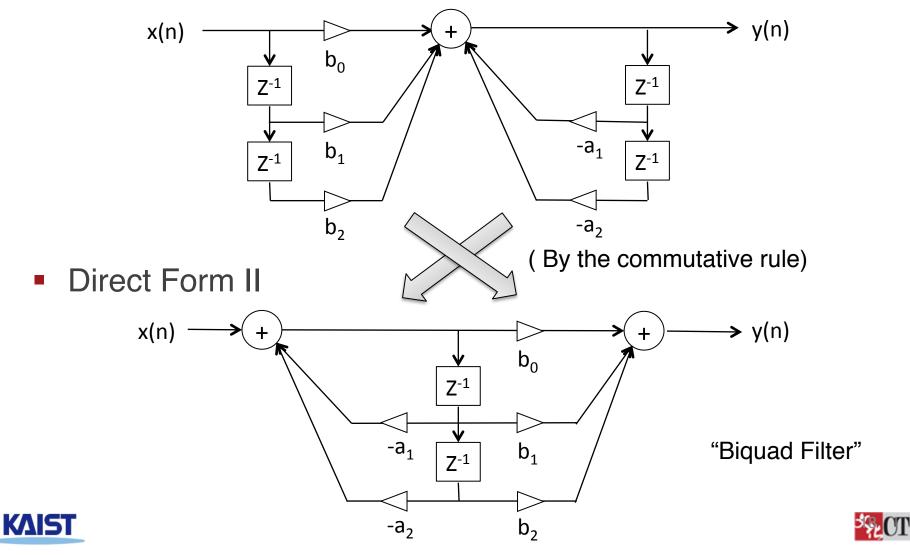
- $a_1 y(n-1) - a_2 y(n-2) - \dots - a_N y(n-N)$ "Difference Equation"

- The order of the filter is the greater of M or N



Filter Implementation Forms

Direct Form I



Example of Filter Implementation

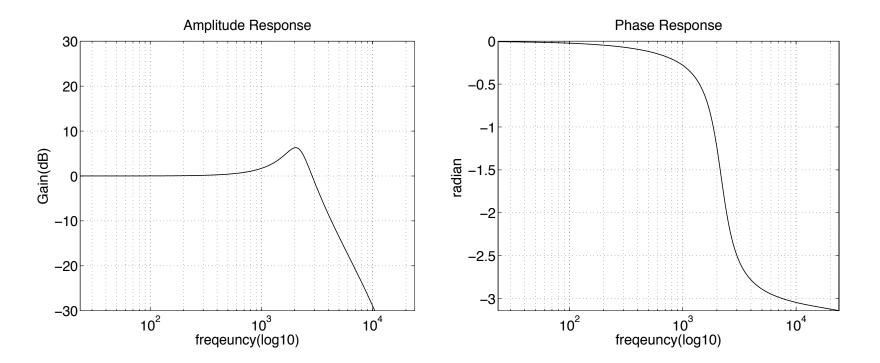
Typically implemented in time-domain

```
x = audioread('my_sound.wav');
% delay elements
                                                   B = [b0 \ b1 \ b2];
xz1 =0; xz2 =0;
                                                   A = [a0 \ a1 \ a2];
yz1 =0; yz2 =0;
                                                   y = filter(B,A,x);
% output
                                                     A short version
y = zeros(length(x), 1);
                                               using "filter" function in Matlab
% Direct Form I
for i=1:length(x)
    y(i) = (b0*x(i) + b1*xz1 + b2*xz2 - a1*yz1 - a2*yz2)/a0;
    xz2 = xz1;
    xz1 = x(i);
    yz2 = yz1;
    yz1 = y(i);
end
```

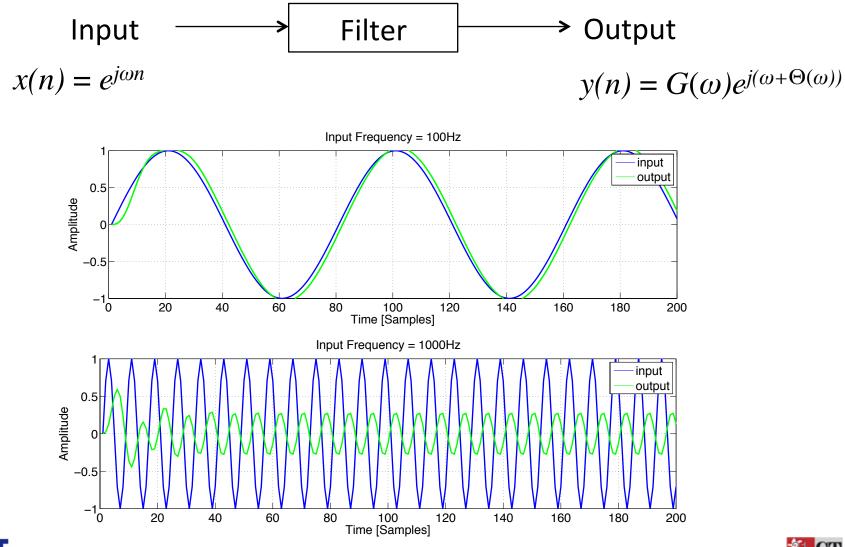

Frequency Responses

Describe the characteristics of filters in frequency domain

- Amplitude response: the amount of amplitude change (often in dB)
- Phase response: the amount of delay (-2pi ~ 0)



Frequency Responses



Frequency Response

For the sinusoidal input and outputs

$$-x(n) = e^{j\omega n} \rightarrow x(n-m) = e^{j\omega(n-m)} = e^{-j\omega m} x(n)$$
 for any m

- $y(n) = G(\omega)e^{j(\omega n + \Theta(\omega))} \rightarrow y(n-m) = G(\omega)e^{j(\omega(n-m) + \Theta(\omega))} = e^{-j\omega m}y(n)$ for any m

Putting this property into the general form of difference equation

$$y(n) = b_0 x(n) + b_1 e^{-j\omega} x(n) + b_2 e^{-j2\omega} x(n) + \dots + b_M e^{-jM\omega} x(n)$$

- $a_1 e^{-j\omega} y(n) - a_2 e^{-j2\omega} y(n) - \dots - a_N e^{-jN\omega} y(n)$

$$y(n) = \frac{b_0 + b_1 e^{-j\omega} + b_2 e^{-j2\omega} + \dots + b_M e^{-jM\omega}}{1 + a_1 e^{-j\omega} + a_2 e^{-j2\omega} + \dots + a_N e^{-jN\omega}} x(n)$$

$$H(\omega) = \frac{b_0 + b_1 e^{-j\omega} + b_2 e^{-j2\omega} + \dots + b_M e^{-jM\omega}}{1 + a_1 e^{-j\omega} + a_2 e^{-j2\omega} + \dots + a_N e^{-jN\omega}}$$

 $H(\omega)$: frequency response $|H(\omega)| = G(\omega)$: amplitude response $\angle H(\omega) = \Theta(\omega)$:phase response

Examples of Frequency Response

- Moving-average filter (lowpass)
 - y(n) = 0.5(x(n) + x(n-1))
 - $H(\omega) = 0.5(1 + e^{-j\omega}) = 0.5(e^{j\omega/2} + e^{-j\omega/2})e^{-j\omega/2} = \cos(\omega/2) e^{-j\omega/2}$
 - $G(\omega) = \cos(\omega/2), \ \Theta(\omega) = -\omega/2$

- Differentiator (highpass)
 - y(n) = 0.5(x(n) + x(n-1))
 - $H(\omega) = 0.5(1 e^{-j\omega}) = 0.5(e^{j\omega/2} e^{-j\omega/2})e^{-j\omega/2} = \sin(\omega/2) e^{-j\omega/2 + j\pi/2}$
 - $G(\omega) = \sin(\omega/2), \ \Theta(\omega) = -\omega/2 + \pi/2$

Z-Transform

- Z-transform
 - Define z to be a variable in complex plane: we call it z-plane
 - When $z = e^{j\omega}$ (on unit circle), the frequency response is a particular case of the following

$$H(z) = \frac{B(z)}{A(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_M z^{-M}}{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_N z^{-N}}$$

- We call this Z-transform of h(n) or transfer function
- z^{-1} corresponds to one sample delay:
 - Called delay operator or delay element
- Filters are often expressed as Z-transform

Poles and Zeros

H(*z*) can be factorized and we can find roots for each of polynomials

$$H(z) = \frac{B(z)}{A(z)} = \frac{(1 - q_1 z^{-1})(1 - q_2 z^{-1})(1 - q_3 z^{-1})\dots(1 - q_M z^{-1})}{(1 - p_1 z^{-1})(1 - p_2 z^{-1})(1 - p_3 z^{-1})\dots(1 - p_N z^{-1})}$$

- Zeros: the numerator roots
- Poles: the denominator roots
- We can analyze frequency response of filters more easily with poles and zeros than numerator or denominator coefficient!!!

Pole-Zero Analysis: Amplitude Response

The amplitude response is represented as

$$\begin{split} G(\omega) &= \left| H(z = e^{j\omega}) \right| = \left| \frac{(1 - q_1 e^{-j\omega})(1 - q_2 e^{-j\omega})(1 - q_3 e^{-j\omega})...(1 - q_M e^{-j\omega})}{(1 - p_1 e^{-j\omega})(1 - p_2 e^{-j\omega})(1 - p_3 e^{-j\omega})...(1 - p_N e^{-j\omega})} \right| \\ &= \left| \frac{(e^{j\omega} - q_1)(e^{j\omega} - q_2)(e^{j\omega} - q_3)...(e^{j\omega} - q_M)}{(e^{j\omega} - p_1)(e^{j\omega} - p_2)(e^{j\omega} - p_3)...(e^{j\omega} - p_N)} \right| \\ &= \frac{\left| (e^{j\omega} - q_1) \right| (e^{j\omega} - q_2) \left| (e^{j\omega} - q_3) \right| ... \left| (e^{j\omega} - q_M) \right|}{(e^{j\omega} - p_1) \left| (e^{j\omega} - p_2) \right| (e^{j\omega} - p_3) \left| ... \right| (e^{j\omega} - q_M) \right|} \end{split}$$

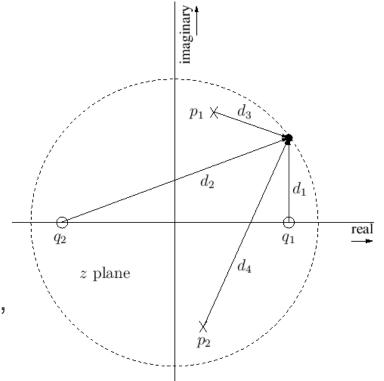
- Numerator: factors of distance between zero and unit circle
- Denominator: factors of distance between pole and unit circle

Pole-Zero Analysis: Amplitude Response

- Bi-quad case
 - The amplitude response is given as

$$G(\omega) = \frac{d_1(\omega)d_2(\omega)}{d_3(\omega)d_4(\omega)}$$

- As poles are close to the unit circle, the amplitude response is boosted
- As zeros are close to the unit circles, the amplitude response is damped



- If poles are outside the unit circle, the filter becomes unstable!
 - If poles are on the unit circles, the filter oscillates.

Examples

- Moving-average filter (lowpass)
 - y(n) = 0.5(x(n) + x(n-1))
 - zeros: z = -1 (no poles)
- Leaky Integrator
 - y(n) = x(n) + ry(n-1)
 - poles: z = -r (no zeros)
- Reson filter
 - $y(n) = x(n) + 2r\cos\theta y(n-1) r^2 y(n-2)$
 - poles: $z = r(\cos\theta + j\sin\theta), r(\cos\theta j\sin\theta)$ (no zeros)
- Feed-back comb filter
 - y(n) = x(n) ry(n-M) (for convenience, the sign of r has changed)
 - poles: $z = r^{1/M} (\cos(2\pi/Mn) + j\sin(2\pi/Mn)) (n=0, 1, 2, ..., M-1)$ (no zeros)

Pole-Zero Analysis: Phase Response

The phase response is represented as

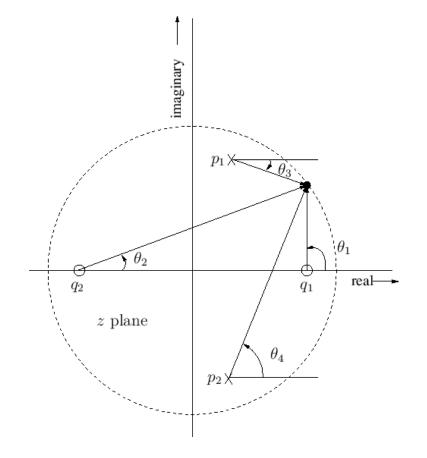
$$\begin{split} \Theta(\omega) &= \angle H(z = e^{j\omega}) = \angle \frac{(1 - q_1 e^{-j\omega})(1 - q_2 e^{-j\omega})(1 - q_3 e^{-j\omega})...(1 - q_M e^{-j\omega})}{(1 - p_1 e^{-j\omega})(1 - p_2 e^{-j\omega})(1 - p_3 e^{-j\omega})...(1 - p_N e^{-j\omega})} \\ &= \angle (e^{j\omega} - q_1) + \angle (e^{j\omega} - q_2) + \angle (e^{j\omega} - q_3)...\angle (e^{j\omega} - q_M) \\ &- \angle (e^{j\omega} - p_1) - \angle (e^{j\omega} - p_2) - \angle (e^{j\omega} - p_3)... - \angle (e^{j\omega} - p_N) \end{split}$$

Pole-Zero Analysis: Phase Response

In the following examples, the phase response is given as

$$\Theta(\omega) = \theta_1 + \theta_2 - \theta_3 - \theta_4$$

- Positive angles for zeros
- Negative angle for poles



Formal Definition of Z-transform

Z-transform

$$X(z) = \sum_{n=0}^{\infty} x(n) z^{-n}$$

- Properties
 - Shift theorem: $x(n \Delta) \Leftrightarrow z^{-\Delta}X(z)$
 - Convolution theorem: $x(n) * h(n) \Leftrightarrow X(z)H(z)$
 - Therefore, the transfer function is represented as

$$y(n) = x(n) * h(n) \Leftrightarrow H(z) = \frac{Y(z)}{X(z)}$$

- Decomposing z-transforms
 - Series combination: $H(z) = H_1(z)H_2(z) \Leftrightarrow h(n) = h_1(n) * h_2(n)$
 - Parallel combination: $H(z) = H_1(z) + H_2(z) \Leftrightarrow h(n) = h_1(n) + h_2(n)$

Frequency Response by DTFT

Discrete-Time Fourier Transform

- Putting $z^{-1} = e^{-j\omega}$ back to the Z-transform

$$X(e^{-j\omega}) = X(\omega) = \sum_{n=0}^{\infty} x(n)e^{-jn\omega}$$

- The properties work for DTFT in the same manner
 - Shift theorem: $x(n \Delta) \Leftrightarrow e^{-j\Delta\omega}X(\omega)$
 - Convolution theorem: $x(n) * h(n) \leftrightarrow X(\omega)H(\omega)$
- The frequency response is represented as

$$y(n) = x(n) * h(n) \Leftrightarrow H(\omega) = \frac{Y(\omega)}{H(\omega)}$$

Practical Filters

- One-pole one-zero filters
 - Moving average filters: low-pass filter
 - Leaky integrator: low-pass filter
 - DC-removal filters: high-pass filter
 - Bass / treble shelving filter
- Bi-quad filters
 - Low-pass / high-pass filters
 - Band-pass / botch filters
 - EQ
 - The two-poles are real-numbers or complex conjugate
- Note that any high-order filter can be factored into onepole one-zero filters and bi-quad filters!

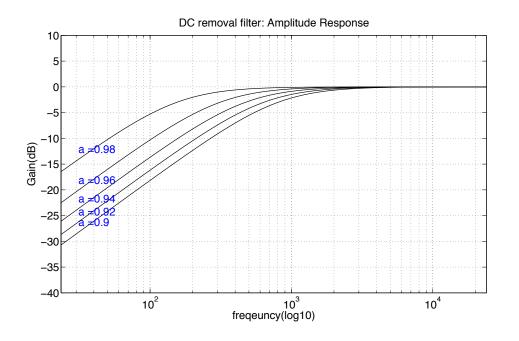
$$H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{a_0 + a_1 z^{-1} + a_2 z^{-2}}$$

 $H(z) = \frac{b_0 + b_1 z^{-1}}{a_0 + a_1 z^{-1}}$

One-pole one-zero filters

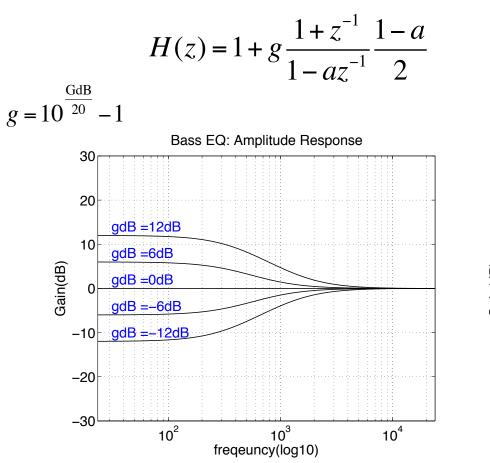
DC-removal filters: high-pass filter

$$H(z) = \frac{1 - z^{-1}}{1 - az^{-1}} (\frac{1 + a}{2})$$

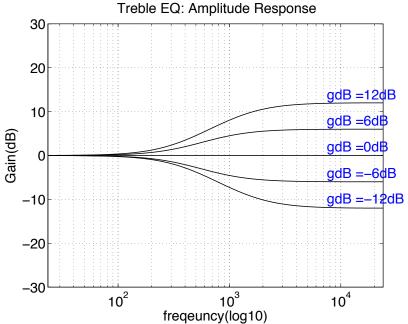


One-pole one-zero filters

Bass / Treble shelving



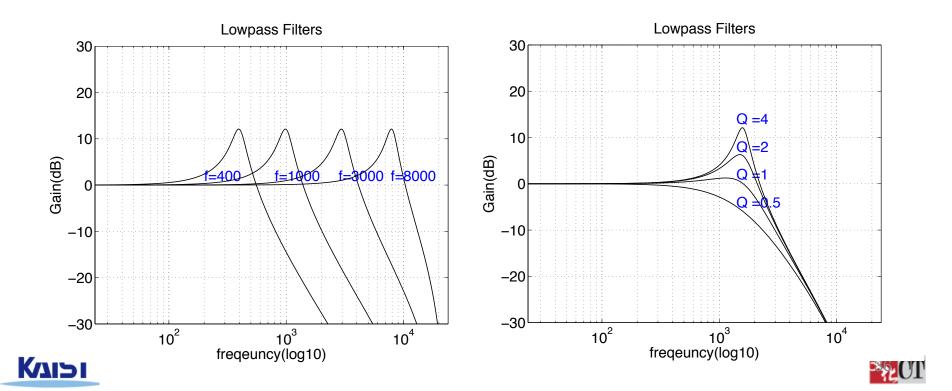
$$H(z) = 1 + g \frac{1 - z^{-1}}{1 - az^{-1}} \frac{1 + a}{2}$$



Low-pass filter

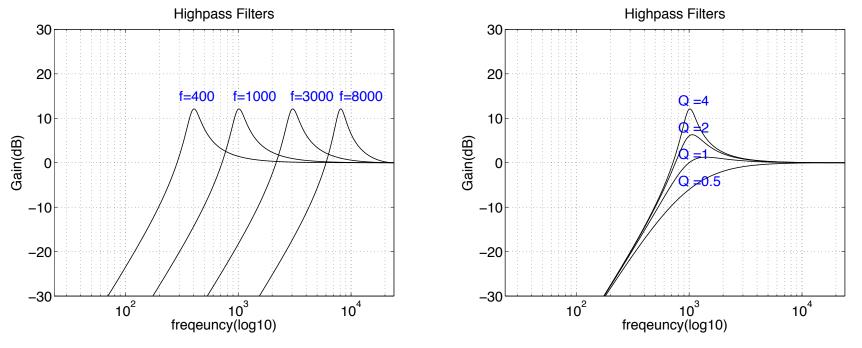
$$H(z) = \left(\frac{1 - \cos\Theta}{2}\right) \frac{1 + 2z^{-1} + 1z^{-2}}{(1 + \alpha) - 2\cos\Theta z^{-1} + (1 - \alpha)z^{-2}} \qquad \alpha = \frac{\sin\Theta}{2Q} \qquad \Theta = 2\pi f_c / f_s$$

- fc : cut-off frequency, Q: resonance



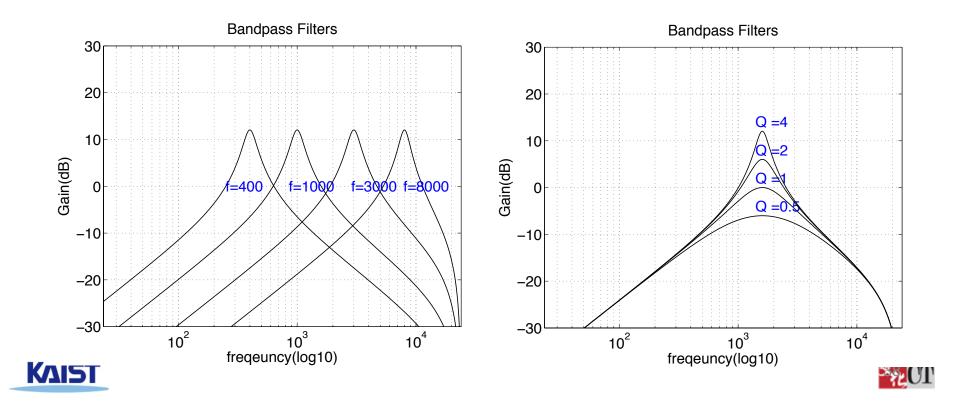
High-pass filter

$$H(z) = (\frac{1 + \cos\Theta}{2}) \frac{1 - 2z^{-1} + 1z^{-2}}{(1 + \alpha) - 2\cos\Theta z^{-1} + (1 - \alpha)z^{-2}} \qquad \alpha = \frac{\sin\Theta}{2Q} \qquad \Theta = 2\pi f_c / f_s$$



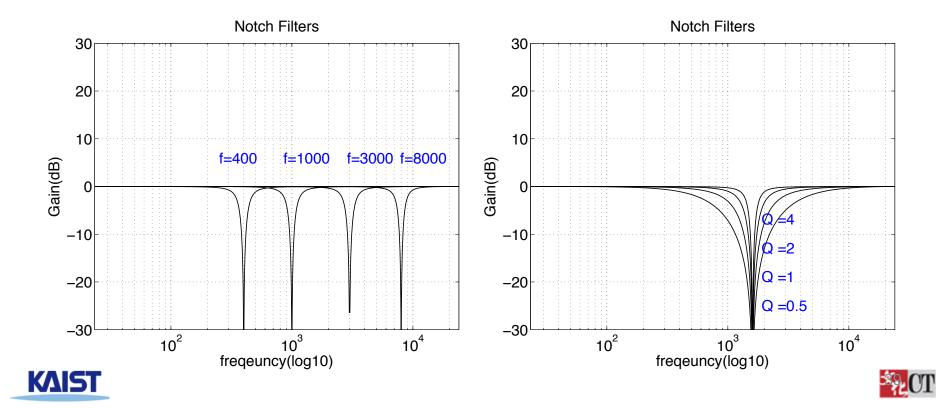
Band-pass filter

$$H(z) = \left(\frac{\sin\Theta}{2}\right) \frac{1 - z^{-2}}{(1 + \alpha) - 2\cos\Theta z^{-1} + (1 - \alpha)z^{-2}} \qquad \alpha = \frac{\sin\Theta}{2Q} \qquad \Theta = 2\pi f_c / f_s$$

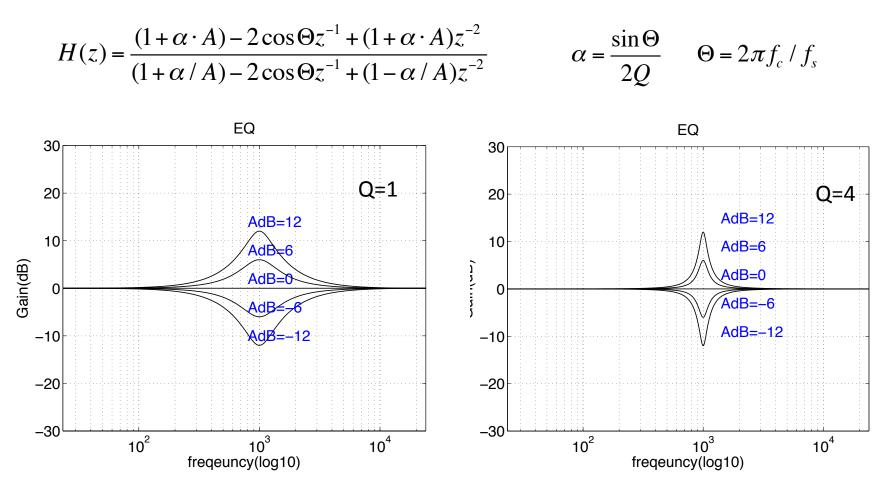


Notch filter

$$H(z) = \frac{1 - 2\cos\Theta z^{-1} + z^{-2}}{(1 + \alpha) - 2\cos\Theta z^{-1} + (1 - \alpha)z^{-2}} \qquad \alpha = \frac{\sin\Theta}{2Q} \qquad \Theta = 2\pi f_c / f_s$$



Equalizer



References

- Cookbook formulae for audio EQ biquad filter coefficient, R. Bristow-Johnson
 - <u>http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt</u>

