CTP 431 Music and Audio Computing

Sound Processing and Digital Filters

Graduate School of Culture Technology (GSCT)
Juhan Nam

_KAIST

Outlines

Introduction: Sound Processing

= Linear Time-Invariant Digital Filter
— Impulse response
— Convolution

= Digital Filters
— FIR Filters
— 1IR Filters

= Frequency Response

= Transfer functions
— Z-transform
— Pole-Zero Analysis

Bi-quad Filters

KAIST

Introduction: Sound Processing

= Sounds captured on computers are processed in various
ways

KAIST

Sample editing: cut, copy, paste

Amplitude: gain, fade in/out, automation curve, compressor
Timbre: lowpass/highpass filters, EQ, distortion, modulation
Spatial effect: delay, reverberation

Pitch: pitch shifting (e.g. auto-tune)

Time stretching

Noise suppression

Sound Processing

Input > Processor —> Qutput

= Linear processing
— No sinusoidal components are introduced by the processing

« Only the amplitude and phase of sinusoidal components of the
input change
— Filters (lowpass, highpass, bandpass, ...), EQ
— Delay-based audio effect: delay, chorus, flanger, reverberation

= Non-linear processing
— New sinusoidal components are generated
— Compressor, distortion, clipping
— Pitch shifting, ring modulation, ...

KAIST ZOT

Linear Time-Invariant (LTI) Digital Filters

Input > Filter > Output

x(n) y(n)
= What linear filters can do
— Amplifying the input (or the past output): e.g. y(n) = ax(n)
— Delaying the input (or the past output): e.g. y(n) = x(n-1)

— Summing them all: y(n) = ax(n) + x(n-1)

= “Easy-to-understand” definition

KAIST ZH0T

LTI Digital Filters (Formal)

Input > Filter > Qutput
x(n) y(n)
= Linearity

— Homogeneity: if x(n) 2> y(n), ax(n) 2> ay(n)
— Superposition: if x,(n) = y, (n) and x,(n) 2 y,(n), x;(n) + x,(n) >
yi(n) + y,(n)

= Time-Invariance
— If x(n) 2> y(n), x(n-N) = y(n-N) for any N
— The system does not change its behavior with time.
 In practice, most systems do change over time but not quickly

KAIST =0T

Example: Simple LTI Digital Filters

= Moving-average filter
— y(n) = 0.5x(n) + 0.5x(n-1)
— Low-pass

= Differentiator
— y(n) = 0.5x(n) - 0.5x(n-1)
— High-pass

= Feed-forward comb filter
— y(n) = x(n) + x(n-M) where M is, say,100
— Renders harmonically distributed peaks and valleys

KAIST

Impulse Response

Input > Filter > Output

x(n) =0(n) h(n) y(n) = h(n)

= Characterize filters as a number sequence

= (Obtained when x(n) is a unit impulse
— x(n)=06(n)=[1,0,0,0, ...] 2 y(n) =h(n)

= Can be measured from a linear system (black-box approach)

— If you excite the linear system with an impulse, you can record the
output and use that to determine exactly what the system response
would be to any arbitrary input.

KAIST =0T

Convolution

= The output of LTI systems is represented by convolution
operation between the input x(n) and impulse response
h(n)

y(m) = x(n)*h(n) = Y x(i)h(n~i)

= Deriving convolution
— The input is decomposed into a time-ordered set of weighted
impulse

* x(n) =[xy X; X, X3 ... Xy]
= x,0(n) + x,0(n-1) + x,0(n-2) + x;0(n-3) + ...+ x,,0(n-M)

— By the linearity and time-invariance
* y(n) =x,h(n) + x;h(n-1) + x,h(n-2) + x;h(n-3) + ...+ x,,h(n-M)

KAIST =0T

Convolution in Practice

= From the commutative law

Y1) = x(m)* h(n) = Y x(ih(n=i) ="y x(n-i)h(i)

— y(n) = hyx(n) + hyx(n-1) + hyx(n-2) + hyx(n-3) + ...+ hypx(n-M)
— For example: x(n) (n=0,1,2,34,5), h(n) =[h,h, h,]
"0 = h0x(0) } Transient region
* (1) = hox(1) + hx(0)
* W(2)=hpx(2) + hyx(1) + hpx(0) =
* V(3)=hpx(3) + hx(2) + hyx (1)

— Fully overlapped region

* Y(4) =hp(4) + hyx(3) + hyx (2) (steady-state)

* Y(3) = hgx(5) + hyx(4) + hyx (3) —

" ¥(6) = h]x(5) " hzx (4) }. Transient region
* W7) = hox (5)

KAIST E20T

Convolution in Practice

= |f the length of x(n) is M and the length of A(n) is N, the
length of y(n) is M+N-1

= Computation Complexity
— In Big-O notation, it requires M x N multiplications

— If N is a large number, it is quite expensive to compute

— We can compute convolution in frequency domain, which is
much cheaper than the time-domain approach when the impulse
response is long (e.g. reverberation or head-related transfer

functions)

KAIST 20T

Properties of LTI systems

= Commutative
x(n)*h(n)*h,(n) = x(n)* h,(n)* h(n)

= Associative

{x(n)*h(n)}*hy(n)=x(n)*{h(n)*h,(n)}
= Distributive

x(n)* by (n) + x(n)* hy(n) = x(n) * {h (n) + h,(n)}

KAIST

FIR Filters

= The output is formed from input and its past input
— They have finite impulse responses (FIR)
— Convolution with the finite impulse responses

y(n)=b,x(n)+bx(n-1)+b,x(n-2)+...+b,x(n—M)

x(n) l, > y(n)

b,
Z-l

x(n-1) " =

v zi| b

x(n-2) | I~

“Delay operator” (n-2) ; -

(a unit sample of delay) v b,
Z-l

N

x(n-M) —
by,

KAIST

lIR Filters

= The output can be also formed by input and past outputs
— The feedback creates an infinite impulse response!
— Convolution with the infinite impulse responses

y(n)=bx(n)-a,yn-1)-a,y(n-2)—...—b,y(n—-N)

x(n) + \L > y(n)
b, o
——— v(n-1)
_al Z'l
< ‘ y(n-2)
a, ~l'
7-1
—1
B y(n-M)
ay

KAIST ' SAOT

lIR Filters

* The infinite impulse response

— For example: y(n) = x(n) + ry(n-1)
* ¥(0) =x(0)
* y() =x(1) + ry(0) = x(1) + rx(0)
* v(2) =x(2) + ry(1) = x(2) + rx(1) + r’x(0)
* v(3) =x(3) + ry(2) = x(3) + rx(2) + r’x(1) + r*x(0)
o yv(4)=x(4) +ry(3) = x(4) + rx(3) + r’x(2) + r*x(1) + r*x(0)

>hn)=[1rrrrrrrr..]

— Stability issue!
o If r <1, the filter becomes stable
* If r=1, the filter oscillates
 If r>1, the filter becomes unstable

— The impulse response is long but, in practice, it is finite (for r < 1)
because the level goes below the the quantization noise floor

KAIST 30T

Example: IIR Filters

= |eaky Integrator
— y(n) = x(n) + ry(n-1)
— ris a slightly less than 1. (1-r) is the “leak”
— Lowpass filtering

= “Reson” filter
— y(n) = x(n) +2rcosBy(n-1) - r>y(n-2)
— rcontrols the resonance and 0 controls its frequency
* Resonance: 0 (low resonance) <r <1 (low resonance)
- Cut-off frequency (f,): 8=2rtf /f, (f;: sampling rate)
— Low-pass/band-pass/high-pass filtering depending on additional
Zeros

= Feed-back comb filter

— y(n) = x(n) + ry(n-M)
— Renders a harmonic tone

KAIST

General Filter Form

= The general form of digital Filters
y(n)=b,x(n)+bx(n-1)+b,x(n-2)+...+b,x(n—-M)
-ayn-1)-a,y(n-2)—...—a,y(n—-N) “Difference Equation”

— The order of the filter is the greater of M or N

X(n) \L '|> + l' > y(n)
b,

Z-l Z-l
X(n-1) —T> ~F—= v(n-1)
71 b1 dq 71
x(n-2) ‘ > < J y(n-2)
‘1:' b, a, ‘l'

Z—l Z-l

—1
x(n-M) > Y y(n-N)
by an

KAIST _ ZA0T

Filter Implementation Forms

= Direct Form |

x(n) > > y(n)
!ob,
Z-l
=
v
Z—l bl
| ~
L
b, 3
. (By the commutative rule)
= Direct Form Il
x(n) + i' B —> y(n)
I:)0
Z—l
—1 ™~
N v L
may 211 b, “Biquad Filter”
1 | I~
~ L
KAIST -a, b, B0\

Example of Filter Implementation

= Typically implemented in time-domain

X = audioread('my sound.wav');

% delay elements
xz1 =0; xz2 =0;
yz1l =0; yz2 =0;

% output
y = zeros(length(x),1);

% Direct Form I
for i=1:1length(x)

y(1i) = (b0xx(i) + blkxzl + b2%xz2 -

xz2 = xz1;
xz1 = x(1);
yz2 = yz1;
yz1l = y(i);
end
KAIST

B = [b® bl b2];
A = [a0@ al a2];
y = filter(B,A,x);

A short version
using “filter” function in Matlab

alxyzl - a2xyz2)/a0;

Frequency Responses

= Describe the characteristics of filters in frequency domain
— Amplitude response: the amount of amplitude change (often in dB)
— Phase response: the amount of delay (-2pi ~ 0)

Amplitude Response Phase Response
30 T T T 0
20+ e T : L : -0.5¢F
10t EREE : _ : 2] -1t
)
) 3 15"
£ 0 ©
© s
0]
-10¢ -2
-2.5
-20r
30 1 1 _37 1 1 1
10? 10° 10* 10° 10° 10*
fregeuncy(log10) freqeuncy(log10)

KAIST 20T

Frequency Responses

Input > Filter > Qutput
x(n) = e®n y(n) = G(w)el(©+0@)
Input Frequency = 100Hz
1 \ \ \ B
0.5~ e p\
£
-0.5r
_10 2‘0 40 60 8‘0) 180 120 140 160 1éo 200
Time [Samples]

Input Frequency = 1000Hz
I

0 AR
2 vJWWWvﬂmWdWJWdﬂdﬂdﬂdﬂdﬁdﬂdﬂdﬂdﬁdﬂdﬂdﬂW

AR AR

1 éo 180 200
Time [Samples]
KAIST

Frequency Response

= For the sinusoidal input and outputs
— x(n) =" 2> x(n-m) = &M = g7 x(n) for any m
— y(n) = G(w)el(@*+0@) 5 y(n-m) = G(w)el(@-m+0Ww)) = g-jomy(n) for any m

= Putting this property into the general form of difference
equation

y(n) = byx(n)+be " x(n)+b e‘jzwx(n) +...+b,e ™M x(n)

-j2w —]Na)

—a,e”y(n)—a,e*"y(n)-...- y(n)

b, +b, e'j‘” +be?” + ..+ bMe'jM“’
y(n) = | 30
+a,e” +ae

x(n)

o i Mo H(w) : frequency response

H(w)= by +bie . thye = totbye — |H(w)! = G(w) : amplitude response
- jw -J20 = JiNw

l+ae” +a,e’ " +...+aye / Hw)

= O(w) :phase response

KAIST 22T

Examples of Frequency Response

= Moving-average filter (lowpass)
— y(n) =0.5(x(n) + x(n-1))
— H(w) = 0.5(1+ €7?) = 0.5(e/”?+ e792)e7?? = cos(w/2) T
— G(w) = cos(w/2), O(w) = -w/2

= Differentiator (highpass)
— y(n) = 0.5(x(n) + x(n-1))
— H(w) = 0.5(1- e7?) = 0.5(e/?2- e702)e 02 = gin(w/2) e w2 +im?2

— G(w) = sin(w/2), O(w) = -w/2+7/2

KAIST

Z-Transform

= Z-transform

KAIST

— Define z to be a variable in complex plane: we call it z-plane

When z = ¢/ (on unit circle), the frequency response is a particular

case of the following

_B(z) b, + bz +b,z7 +..+b,z7"

-1 -2 -N
A(z) l+az7 +a,z7+...+a,z

H(z)

We call this Z-transform of h(n) or transfer function
7! corresponds to one sample delay:

» Called delay operator or delay element
Filters are often expressed as Z-transform

Poles and Zeros

= H(z) can be factorized and we can find roots for each of
polynomials

_B() _(1-¢z)(1-¢z)1-gz)..(1-g,2")
Az) (A-pzH)A-p,z)A-pz)..1-pyz)

— Zeros: the numerator roots

— Poles: the denominator roots

H(z)

= We can analyze frequency response of filters more
easily with poles and zeros than numerator or
denominator coefficient!!!

KAIST 20T

Pole-Zero Analysis: Amplitude Response

= The amplitude response is represented as

(1-gqe”)1-g,e’)1-qe)...A-q,e’)
(I-pe”)A-pe”)A-pe”)..A-pye™)

G(w)=|H(z=e")|=
(" =g)" —q,)(e" —q)..(e" —q,,)
(" = p)(e" = p,)(e” = p,)..(e" = py)
e —ale” gl = g)]- [)

€ = p)||(e” - p,)||(€" = py)|-.[€" = py)|

— Numerator: factors of distance between zero and unit circle
— Denominator: factors of distance between pole and unit circle

KAIST

Pole-Zero Analysis: Amplitude Response

= Bi-quad case
— The amplitude response is given as

2
|
Ey
=

d (w)d,(w
G(w) = 1() 2()
dy(@)d, () /
— As poles are close to the unit circle, i\. G
the amplitude response is boosted " 2 plane

— As zeros are close to the unit circles,
the amplitude response is damped

real

(14

» |f poles are outside the unit circle, the filter becomes

unstable!
— If poles are on the unit circles, the filter oscillates.

KAIST

Examples

= Moving-average filter (lowpass)
— y(n) =0.5(x(n) + x(n-1))
— zeros: z=-1 (no poles)

Leaky Integrator

— y(n) =x(n) + ry(n-1)
— poles: z = -r (N0 zeros)

Reson filter
— y(n) = x(n) +2rcosOy(n-1) - r’y(n-2)
— poles: z = r(cosO + jsinB), r(cosO - jsinO) (N0 zeros)

Feed-back comb filter
— y(n) = x(n) - ry(n-M) (for convenience, the sign of r has changed)
— poles: z = r'™ (cos(2a/Mn) + jsin(2/Mn)) (n=0, 1, 2, ... M-1) (nO zeros)

KAIST =0T

Pole-Zero Analysis: Phase Response

* The phase response is represented as
L mIONT o oINSy _ —jo
Ow)=2H(z=e")= 2 qle_fw)a qze_.w)(l qge_'w)---(l qu__w)
(1-pe ™)1=p,e”)1=pe™)...1 - pye™)
=L(e" —q)+L(e" —q,)+ L(" = q3)..L(e"" - q,)
—£(e" = p)-L(" = p,) = L(" = py)...— L(" = py)

KAIST 20T

Pole-Zero Analysis: Phase Response

* |n the following examples, the phase response is given as

—_—

Ow)=6 +6, -6, -0,

» imaginary

— Positive angles for zeros
— Negative angle for poles

z plane

KAIST 22T

Formal Definition of Z-transform

= Z-transform

X(z)= E x(n)z™"
n=0

= Properties
— Shift theorem:x(n—A) <>z *X(z)
— Convolution theorem:x(n)* h(n) <> X(2)H (2)

« Therefore, the transfer function is represented as

y(n)=x(n)*h(n)<> H(z)= LZ)

X(2)

= Decomposing z-transforms
— Series combination: H(z)=H,(2)H,(z) <> h(n)=h,(n)* h,(n)
— Parallel combination: H(z)=H,(z)+ H,(2) <> h(n) = h/(n)+ h,(n)

KAIST ECT

Frequency Response by DTFT

= Discrete-Time Fourier Transform
— Puttingz™' = e back to the Z-transform

X(e)= X(w) = E x(n)e "
n=0

* The properties work for DTFT in the same manner
_ Shift theorem: x(n—=A) <> e X(w)
— Convolution theoremx(n)* h(n) <> X(w)H (w)

* The frequency response is represented as

= * <~ =M
y(n)=x(n)*h(n) <= H(w) Ho)

KAIST

Practical Filters

= One-pole one-zero filters
— Moving average filters: low-pass filter
— Leaky integrator: low-pass filter H(z) = by+bz”
— DC-removal filters: high-pass filter a, +a,z"
— Bass / treble shelving filter

= Bi-quad filters
— Low-pass / high-pass filters by +bz " +b,z”
. H(z)= - -
— Band-pass / botch filters ay+ a2 +a,z
- EQ
— The two-poles are real-numbers or complex conjugate

= Note that any high-order filter can be factored into one-
pole one-zero filters and bi-quad filters!

KAIST 22T

One-pole one-zero filters

= DC-removal filters: high-pass filter

1—z4(1+a
2

H(z)=)

1-az

DC removal filter: Amplitude Response
T ‘ T

Gain(dB)

il
10° 10
freqeuncy(log10)

KAIST

il
10*

One-pole one-zero filters

= Bass / Treble shelving

-1 -1
I+ 1-a -z 1+a
H(z)=1+g —~ H(z)=1+g —~
l-az7 2 l-az7 2
GdB
g=102 -1
Bass EQ: Amplitude Response Treble EQ: Amplitude Response
30 T T LA B R R | T T T LA B R | T T T LA R R A | 30 T T T T T T T LA R I | T T T T T
20r] 20 : : .
gdB =12dB dB =12dB
101" 4B =60B] 10 gdB =6dB
@ @ B =0dB
2 o0 Z 0 gdB =0
& 3 gdB =—64B
-10¢ -10r : ~ dB =-12dB
-20r] -20r
_30 S S S A i R S R | i R S A | i _30 1 1 L
10° 10° 10" 10° 10° 10"
freqeuncy(log10) freqeuncy(log10)

Bi-quad Filters

= |Low-pass filter

1-cos® 1+277 +1772 sin®
H(z)=() - T — a-=
2 (I+a)-2cosOz +(1-a)z 20

©=2xf/f
— fc : cut-off frequency, Q: resonance

Lowpass Filters Lowpass Filters

30— 30—
20+ SRS S i . 20+
10 10+
o o
© ©
£ 0 0
Q) [}
O O]
-10 _10t
-20F -20r
-30 o S i : -30—————++ N A
10° 10° 10° 10° f 10° 10"
freqeuncy(log10) regeuncy(log10)
Knisi

Ol

Bi-quad Filters

» High-pass filter

1+cos®

1-277"+1772

H(z)=()

2 T(+a)-2cosOz7" +(1-a)z™

Highpass Filters

20r

f=400 ' f=1000 f=3000 f=8000

101

Gain(dB)
o

10 10° 10
freqeuncy(log10)

Gain(dB)

20f

101

-101

-20r

sin ®
o= O=2nf/f,
20
Highpass Filters
10 10° 10*
freqeuncy(log10)

Bi-quad Filters

= Band-pass filter

. -2 .
sin® -z sin®
H(z)=(—>) . 5 a= ©=2xf./f,
2 (+a)-2cos®z7 +(1-a)z 20
Bandpass Filters Bandpass Filters

30 w x x 30 ;

20+ o : : : . 20+

101 101
o) o)
© ©
£ 0 s 0
[} 4]
O O

-10 -10

—20t -201

-30 . e S : 30— NS S e N Hh S

10° 10° 10" 10° 10° 10"

freqeuncy(log10) freqeuncy(log10)

KAIST Fre)

Bi-quad Filters

= Notch filter

1-2cos@z " +77

Gain(dB)

H(z)= 1)
(I+a)-2cosOz7 +(1-a)z
Notch Filters
20
10+]
o f=400 f=1000 f=3000 f=8000
T 0
©
O]
-10}
-20f
-30 I T AR
10° 10°
fregeuncy(log10)
KAIST

sin®

20

o O=2nf/f

Notch Filters

w
o

N
o
T

-
(@)
T

o

-10f

-201

10 10° 10
freqeuncy(log10)

20T

Gain(dB)

Bi-quad Filters

= Equalizer

(l+a-A)-2cosOz"' +(1+a-A)z™ Sin @
H(z)= - - o = ©=2xf/f
(l+a/A)-2cos®z7 +(1-a/A)z 20
EQ EQ
o /g
20¢ - e Q=1 - 20¢ o | - Q
10F 10F
Y
)
0)
3
)
~10f _10l
-20 -20
~30 T T -30 * * *
10° 10° 10° 10° 10° 10
freqeuncy(log10) freqeuncy(log10)

References

= Cookbook formulae for audio EQ biquad filter coefficient,
R. Bristow-Johnson

— http://www.musicdsp.org/files/Audio-EQ-Cookbook.ixt

KAIST 20T

