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Introduction: Sound Processing

§  Sounds captured on computers are processed in various 
ways
–  Sample editing: cut, copy, paste
–  Amplitude: gain, fade in/out, automation curve, compressor 
–  Timbre: lowpass/highpass filters, EQ, distortion, modulation
–  Spatial effect: delay, reverberation
–  Pitch: pitch shifting (e.g. auto-tune)
–  Time stretching
–  Noise suppression
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Sound Processing

§  Linear processing
–  No sinusoidal components are introduced by the processing

•  Only the amplitude and phase of sinusoidal components of the 
input change

–  Filters (lowpass, highpass, bandpass, …), EQ 
–  Delay-based audio effect: delay, chorus, flanger, reverberation

§  Non-linear processing
–  New sinusoidal components are generated
–  Compressor, distortion, clipping
–  Pitch shifting, ring modulation, … 
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Linear Time-Invariant (LTI) Digital Filters

§  What linear filters can do
–  Amplifying the input (or the past output): e.g. y(n) = ax(n)
–  Delaying the input (or the past output): e.g. y(n) = x(n-1) 
–  Summing them all:  y(n) = ax(n) + x(n-1)

§  “Easy-to-understand” definition
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LTI Digital Filters (Formal) 

§  Linearity
–  Homogeneity: if x(n) à y(n), ax(n) à ay(n)
–  Superposition: if x1(n) à y1 (n) and x2(n) à y2 (n),  x1(n) + x2 (n) à 

y1(n) + y2 (n)

§  Time-Invariance
–  If x(n) à y(n),  x(n-N) à y(n-N) for any N
–  The system does not change its behavior with time.

•  In practice, most systems do change over time but not quickly
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Example: Simple LTI Digital Filters

§  Moving-average filter
–  y(n) = 0.5x(n) + 0.5x(n-1)
–  Low-pass

§  Differentiator
–  y(n) = 0.5x(n) - 0.5x(n-1)
–  High-pass

§  Feed-forward comb filter 
–  y(n) = x(n) + x(n-M) where M is, say,100
–  Renders harmonically distributed peaks and valleys
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Impulse Response

§  Characterize filters as a number sequence

§  Obtained when x(n) is a unit impulse
–  x(n) = δ(n) = [1, 0, 0, 0, …] à y(n) = h(n) 

§  Can be measured from a linear system (black-box approach)
–  If you excite the linear system with an impulse, you can record the 

output and use that to determine exactly what the system response 
would be to any arbitrary input.
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Convolution

§  The output of LTI systems is represented by convolution 
operation between the input x(n) and impulse response 
h(n)

§  Deriving convolution
–  The input is decomposed into a time-ordered set of weighted 

impulse
•  x(n) = [x0, x1, x2, x3, … , xM, ] �

        = x0δ(n) + x1δ(n-1) + x2δ(n-2) + x3δ(n-3) + …+ xMδ(n-M)
–  By the linearity and time-invariance

•  y(n) = x0h(n) + x1h(n-1) + x2h(n-2) + x3h(n-3) + …+ xMh(n-M)
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y(n) = x(n)*h(n) = x(i)h(n− i)
i=0

M
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Convolution in Practice

§  From the commutative law

–  y(n) = h0x(n) + h1x(n-1) + h2x(n-2) + h3x(n-3) + …+ hMx(n-M)
–  For example:  x(n) (n=0,1,2,3,4,5) ,  h(n) = [h0 h1 h2  ]

•  y(0) = h0x(0)
•  y(1) = h0x(1) + h1x(0)
•  y(2) = h0x(2) + h1x(1) + h2x(0)
•  y(3) = h0x(3) + h1x(2) + h2x (1)
•  y(4) = h0x(4) + h1x(3) + h2x (2)
•  y(5) = h0x(5) + h1x(4) + h2x (3)
•  y(6) =               h1x(5) + h2x (4)
•  y(7) =                             h2x (5)           
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Convolution in Practice

§  If the length of x(n) is M and the length of h(n) is N, the 
length of y(n) is M+N-1

§  Computation Complexity 
–  In Big-O notation, it requires M x N multiplications
–  If N is a large number, it is quite expensive to compute
–  We can compute convolution in frequency domain, which is 

much cheaper than the time-domain approach when the impulse 
response is long (e.g. reverberation or head-related transfer 
functions)
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Properties of LTI systems

§  Commutative 

§  Associative 

§  Distributive 
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x(n)*h1(n)*h2 (n) = x(n)*h2 (n)*h1(n)

{x(n)*h1(n)}*h2 (n) = x(n)*{h1(n)*h2 (n)}

x(n)*h1(n)+ x(n)*h2 (n) = x(n)*{h1(n)+ h2 (n)}



FIR Filters

§  The output is formed from input and its past input
–  They have finite impulse responses (FIR) 
–  Convolution with the finite impulse responses 
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IIR Filters

§  The output can be also formed by input and past outputs
–  The feedback creates an infinite impulse response!
–  Convolution with the infinite impulse responses 
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IIR Filters

§  The infinite impulse response
–  For example: y(n) = x(n) + ry(n-1)

•  y(0) = x(0)
•  y(1) = x(1) + ry(0) =  x(1) + rx(0) 
•  y(2) = x(2) + ry(1) =  x(2) + rx(1) + r2x(0) 
•  y(3) = x(3) + ry(2) =  x(3) + rx(2) + r2x(1) + r3x(0) 
•  y(4) = x(4) + ry(3) =  x(4) + rx(3) + r2x(2) + r3x(1) + r4x(0) 

–  Stability issue!
•  If r < 1, the filter becomes stable
•  If r =1,  the filter oscillates
•  If r > 1, the filter becomes unstable

–  The impulse response is long but, in practice, it is finite (for r < 1) 
because the level goes below the the quantization noise floor
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à h(n) = [1 r r2 r3 r4 r5 r6 …]	



Example: IIR Filters

§  Leaky Integrator
–  y(n) = x(n) + ry(n-1)
–  r is a slightly less than 1.  (1-r) is the “leak”
–  Lowpass filtering

§  “Reson” filter 
–  y(n) = x(n) +2rcosθy(n-1) - r2y(n-2)
–  r controls the resonance and θ controls its frequency

•  Resonance: 0 (low resonance)  < r  < 1 (low resonance)
•  Cut-off frequency (fc): θ=2πfc/fs  (fs: sampling rate)

–  Low-pass/band-pass/high-pass filtering depending on additional 
zeros

§  Feed-back comb filter 
–  y(n) = x(n) + ry(n-M)
–  Renders a harmonic tone
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General Filter Form

§  The general form of digital Filters

–  The order of the filter is the greater of M or N
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Filter Implementation Forms
§  Direct Form I 

§  Direct Form II
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Example of Filter Implementation

§  Typically implemented in time-domain
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A short version 
using “filter” function in Matlab 



Frequency Responses

§  Describe the characteristics of filters in frequency domain
–  Amplitude response: the amount of amplitude change (often in dB)
–  Phase response: the amount of delay (-2pi ~ 0) 
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Frequency Responses
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§  For the sinusoidal input and outputs
–  x(n) = ejωn   à   x(n-m) = ejω(n-m) = e-jωm x(n)   for any m 

–  y(n) = G(ω)ej(ωn+Θ(ω)) à y(n-m) = G(ω)ej(ω(n-m)+Θ(ω)) = e-jωm y(n) for any m 

§  Putting this property into the general form of difference 
equation
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Frequency Response

y(n) = b0x(n)+ b1e
− jωx(n)+ b2e

− j2ωx(n)+...+ bMe
− jMωx(n)

− a1e
− jωy(n)− a2e

− j2ωy(n)−...− aNe
− jNωy(n)

y(n) = b0 + b1e
− jω + b2e

− j2ω +...+ bMe
− jMω

1+ a1e
− jω + a2e

− j2ω +...+ aNe
− jNω x(n)

H (ω) = b0 + b1e
− jω + b2e

− j2ω +...+ bMe
− jMω

1+ a1e
− jω + a2e

− j2ω +...+ aNe
− jNω

H(ω) :	frequency	response	
|H(ω)| = G(ω) : amplitude	response	
   H(ω) = Θ(ω) :phase	response		∠



Examples of Frequency Response

§  Moving-average filter (lowpass)
–  y(n) = 0.5(x(n) + x(n-1))
–  H(ω) = 0.5(1+ e-jω) = 0.5(ejω/2+ e-jω/2)e-jω/2 = cos(ω/2) e-jω/2 

–  G(ω) = cos(ω/2),  Θ(ω) = -ω/2   

§  Differentiator (highpass)
–  y(n) = 0.5(x(n) + x(n-1))
–  H(ω) = 0.5(1- e-jω) = 0.5(ejω/2- e-jω/2)e-jω/2 = sin(ω/2) e-jω/2+jπ/2

–  G(ω) = sin(ω/2),  Θ(ω) = -ω/2+π/2   
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Z-Transform

§  Z-transform
–  Define z to be a variable in complex plane: we call it z-plane
–  When z = ejω   (on unit circle), the frequency response is a particular 

case of the following 

–  We call this Z-transform of h(n) or transfer function
–  z-1 corresponds to one sample delay: 

•  Called delay operator or delay element
–  Filters are often expressed as Z-transform
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H (z) = B(z)
A(z)

=
b0 + b1z

−1 + b2z
−2 +...+ bMz

−M

1+ a1z
−1 + a2z

−2 +...+ aNz
−N



Poles and Zeros

§  H(z) can be factorized and we can find roots for each of 
polynomials

–  Zeros: the numerator roots
–  Poles: the denominator roots

§  We can analyze frequency response of filters more 
easily with poles and zeros than numerator or 
denominator coefficient!!! 
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H (z) = B(z)
A(z)
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(1− q1z

−1)(1− q2z
−1)(1− q3z

−1)...(1− qMz
−1)

(1− p1z
−1)(1− p2z

−1)(1− p3z
−1)...(1− pNz

−1)



Pole-Zero Analysis: Amplitude Response

§  The amplitude response is represented as

–  Numerator: factors of distance between zero and unit circle
–  Denominator: factors of distance between pole and unit circle
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G(ω) = H (z = e jω ) = (1− q1e
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jω − q2 ) (e
jω − q3) ... (e

jω − qM )
(e jω − p1) (e

jω − p2 ) (e
jω − p3) ... (e

jω − pN )



Pole-Zero Analysis: Amplitude Response

§  Bi-quad case 
–  The amplitude response is given as 

–  As poles are close to the unit circle, 
the amplitude response is boosted

–  As zeros are close to the unit circles, 
the amplitude response is damped

§  If poles are outside the unit circle, the filter becomes 
unstable! 
–  If poles are on the unit circles, the filter oscillates.
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G(ω) = d1(ω)d2 (ω)
d3(ω)d4 (ω)



Examples

§  Moving-average filter (lowpass)
–  y(n) = 0.5(x(n) + x(n-1))
–  zeros: z = -1 (no poles)

§  Leaky Integrator
–  y(n) = x(n) + ry(n-1)
–  poles: z = -r (no zeros)

§  Reson filter 
–  y(n) = x(n) +2rcosθy(n-1) - r2y(n-2)
–  poles: z = r(cosθ + jsinθ), r(cosθ - jsinθ) (no zeros)

§  Feed-back comb filter 
–  y(n) = x(n) - ry(n-M) (for convenience, the sign of r has changed)
–  poles: z = r1/M (cos(2π/Mn) + jsin(2π/Mn)) (n=0, 1, 2, … M-1) (no zeros)
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Pole-Zero Analysis: Phase Response

§  The phase response is represented as 
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Θ(ω) =∠H (z = e jω ) =∠ (1− q1e
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Pole-Zero Analysis: Phase Response

§  In the following examples, the phase response is given as 

–  Positive angles for zeros
–  Negative angle for poles
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Θ(ω) =θ1 +θ2 −θ3 −θ4



Formal Definition of Z-transform

§  Z-transform

§  Properties
–  Shift theorem:
–  Convolution theorem:

•  Therefore,  the transfer function is represented as

§  Decomposing z-transforms 
–  Series combination: 
–  Parallel combination: 
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X(z) = x(n)
n=0

∞
∑ z−n

x(n−Δ)↔ z−ΔX(z)
x(n)*h(n)↔ X(z)H (z)

y(n) = x(n)*h(n)↔H (z) = Y (z)
X(z)

H (z) = H1(z)H2 (z)↔ h(n) = h1(n)*h2 (n)
H (z) = H1(z)+H2 (z)↔ h(n) = h1(n)+ h2 (n)



Frequency Response by DTFT

§  Discrete-Time Fourier Transform 
–  Putting                back to the Z-transform 

§  The properties work for DTFT in the same manner
–  Shift theorem:
–  Convolution theorem:

§  The frequency response is represented  as
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z−1 = e− jω

X(e− jω ) = X(ω) = x(n)
n=0

∞
∑ e− jnω

y(n) = x(n)*h(n)↔H (ω) = Y (ω)
H (ω)

x(n−Δ)↔ e− jΔωX(ω)
x(n)*h(n)↔ X(ω)H (ω)



Practical Filters

§  One-pole one-zero filters
–  Moving average filters: low-pass filter
–  Leaky integrator: low-pass filter
–  DC-removal filters: high-pass filter
–  Bass / treble shelving filter

§  Bi-quad filters
–  Low-pass / high-pass filters
–  Band-pass / botch filters
–  EQ
–  The two-poles are real-numbers or complex conjugate 

§  Note that any high-order filter can be factored into one-
pole one-zero filters and bi-quad filters!
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H (z) = b0 + b1z
−1

a0 + a1z
−1

H (z) = b0 + b1z
−1 + b2z

−2

a0 + a1z
−1 + a2z

−2



One-pole one-zero filters

§  DC-removal filters: high-pass filter
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One-pole one-zero filters

§  Bass / Treble shelving
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Bi-quad Filters

§  Low-pass filter

–  fc : cut-off frequency, Q: resonance 
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H (z) = (1− cosΘ
2

) 1+ 2z−1 +1z−2

(1+α)− 2cosΘz−1 + (1−α)z−2
α =

sinΘ
2Q
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Bi-quad Filters

§  High-pass filter
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H (z) = (1+ cosΘ
2

) 1− 2z−1 +1z−2

(1+α)− 2cosΘz−1 + (1−α)z−2
α =

sinΘ
2Q

Θ = 2π fc / fs
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Bi-quad Filters

§  Band-pass filter
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H (z) = (sinΘ
2
) 1− z−2

(1+α)− 2cosΘz−1 + (1−α)z−2
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Bi-quad Filters

§  Notch filter
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H (z) = 1− 2cosΘz−1 + z−2

(1+α)− 2cosΘz−1 + (1−α)z−2
α =

sinΘ
2Q
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Bi-quad Filters

§  Equalizer

40

H (z) = (1+α ⋅A)− 2cosΘz
−1 + (1+α ⋅A)z−2

(1+α / A)− 2cosΘz−1 + (1−α / A)z−2
α =

sinΘ
2Q

Θ = 2π fc / fs

Q=1	 Q=4	
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