CTP 431 Music and Audio Computing Digital Audio

Graduate School of Culture Technology (GSCT) Juhan Nam

Outlines

- Introduction
 - Digital audio chain
 - Transducers
- Sampling
 - Sampling theorem
 - Aliasing and reconstruction
- Quantization
 - Quantization error: SNR
 - Dynamic range

Digital Audio Chain

Why Digital?

Helmholtz Resonators

Op-amp and amplifier

y[n] = g * x[n]

On computer

Transducers

- Convert one form of energy to another form
 - The forms are different but the information remains (almost) the same
- Microphones
 - Sound wave to electrical signal
 - Dynamic / condenser microphones
- Speakers
 - Electrical signal to sound wave
 - Generate distortion (by diaphragm)
 - Crossover networks: woofer / tweeter

Analog to Digital

Sampling

- Convert continuous-time signal to discrete-time signal by periodically picking up the instantaneous values
 - Represented as a sequence of numbers; pulse code modulation (PCM)
 - Sampling period (T_s) : the amount of time between samples
 - Sampling rate $(f_s = 1/T_s)$

{0,1,.77,.60,.65,0,-.59,-.49,-.57,-.67,0}

DIGITAL SIGNAL

Sampling Theorem

- What is an appropriate sampling rate?
 - Too high: increase data rate
 - Too low: become hard to reconstruct the original signal
- Sampling Theorem
 - In order for a band-limited signal to be reconstructed fully, the sampling rate must be greater than twice the maximum frequency in the signal

$$f_s > 2 \cdot f_m$$

- Half the sampling rate is called Nyquist frequency $(\frac{f_s}{2})$

Aliasing

 If the sampling rate is less than twice the maximum frequency, the high-frequency content is folded over to lower frequency range

Sampling in Frequency Domain

 Sampling in time corresponds to replicating the original signal at every f_s frequency

Aliasing in Frequency Domain

 The high-frequency content is folded over to lower frequency range from the replicated images

 A low-pass filter is applied before sampling to avoid the aliasing noise

Example of Aliasing

Example of Aliasing

- Aliasing in Video
 - <u>https://www.youtube.com/watch?v=QOqtdl2sJk0</u>
 - <u>https://www.youtube.com/watch?v=jHS9JGkEOmA</u>

(Note that video frame rate corresponds to the sampling rate)

Sampling Rates

KAIS1

- Determined by the bandwidth of signals or hearing limits
 - Consumer audio product: 44.1 kHz (CD)
 - Professional audio gears: 48/96/192 kHz
 - Speech communication: 8/16 kHz

Digital to Analog

Reconstruction in Frequency Domain

 In the view of frequency domain, the signal before sampling (continuous-time) signals can be reconstructed by applying a low-pass filter

Conceptually, this is the operation in digital-to-analog converters.

 In practice, DACs are composed of sample-and-hold and lowpass filtering circuitry

Reconstruction in Time Domain

- In time domain, the reconstruction corresponds to interpolation with the sinc function
 - The ideal low-pass corresponds to sinc function
 - The interpolation is actually convolution with the sinc function

Quantization

- Discretizing the amplitude of real-valued signals
 - Round the amplitude to the nearest discrete steps
 - The discrete steps are determined by the number of bit bits

• Audio CD: 16 bits (-2¹⁵ ~ 2¹⁵-1)

Quantization Error

- Quantization causes noise
 - Average power of quantization noise: obtained from the probability density function (PDF) of the error

Dynamic Range, Clipping and Headroom

