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Efficient Antialiasing Oscillator Algorithms Using
Low-Order Fractional Delay Filters
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Abstract—One of the challenges in virtual analog synthesis is
avoiding aliasing when generating classic waveforms such as saw-
tooth and square wave which have theoretically infinite bandwidth
in their ideal forms. The human auditory system renders a cer-
tain amount of aliasing inaudible, which allows room for finding
cost-effective algorithms. This paper suggests efficient algorithms
to reduce the aliasing using low-order fractional delay filters in the
framework of bandlimited impulse train (BLIT) synthesis. Exam-
ining Lagrange, B-spline interpolators and allpass fractional delay
filters, optimized methods will be discussed for generating classic
waveforms (sawtooth, square, and triangle). Techniques for gen-
erating more complicated harmonics such as pulse width modu-
lation, hard-sync, and super-saw are also presented. The percep-
tual evaluation is performed by comparing the threshold of hearing
and masking curve of oscillators with their aliasing levels. The re-
sult shows that the BLIT using the computationally efficient third-
order B-spline generates waveforms that are perceptually free of
aliasing within practically used fundamental frequencies.

Index Terms—Antialiasing, audio oscillators, audio signal pro-
cessing, interpolation, music, signal synthesis.

1. INTRODUCTION

HE fundamental idea of subtractive synthesis is to shape
T the spectrum by filtering a harmonically rich sound
source. Many analog synthesizers of the 1960s and 1970s used
a sound generation method based on subtractive synthesis.
They consist of analog circuit modules including oscillators,
filters, and amplifiers, connected internally or by patch cables
such that rich harmonic sound generated by oscillators is
processed by filters. Although the effort to implement signal
representation of oscillators or filters in digital domain dates
back to Music N in the 1950s and 1960s [1], it was in the 1990s
that analog synthesizers were emulated as a complete unit of
digital systems, beginning with the Nord Lead synthesizer
introduced in 1995. Since then, “virtual analog synthesis” has
become a popular term, referring to computational simulation
of the sound generation principles of analog synthesizers [2].
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Oscillators of analog synthesizers typically include sawtooth,
square, and triangular waveforms. Their rich spectra are real-
ized by discontinuities in the waveform or its derivative, thereby
having theoretically infinite bandwidth. In simulating analog
signals in the digital domain, such wideband characteristics be-
came a challenging issue because harmonic contents above the
Nyquist limit are aliased, which causes unpleasant noise partic-
ularly at high fundamental frequencies. A number of methods
have been proposed to remove or suppress the aliasing noise in
digitally generated oscillators.

An early method for synthesizing alias-free waveforms was
by means of the so-called “discrete summation formulae,” which
allows the generation of N harmonics of a fundamental simulta-
neously [3], [4]. This family of methods is essentially based on
the closed-form expression of a geometric series 1 + r + 2 +
coo N = (1= N) /(1 —7), with 7 set to a complex root of
unity. This corresponds to harmonic additive synthesis to pro-
duce a bandlimited impulse train, but is more efficient compu-
tationally than producing each equal-amplitude harmonic sepa-
rately. A filter, such as a “leaky” integrator 1/(1 — gz~1), with
g = 0.99, ..., is required to integrate the bandlimited impulse
train and approximate the classical square, triangle, and saw-
tooth waveforms and their spectra. Wavetable synthesis is an
older, related approach that allows the production of perfectly
bandlimited waveforms, but with limitations when the funda-
mental frequency must be varied over a wide range [5].

Another class of methods is called quasi-bandlimited tech-
niques [6]. These methods do not eliminate aliasing completely,
but rather suppress it just enough to make it less disturbing.
An interpretation is that these methods sample low-pass-filtered
continuous-time versions of classical waveforms. Stilson and
Smith introduced the bandlimited impulse train (BLIT) method,
in which an oversampled sinc-like pulse (a sampled, bandlim-
ited impulse), is stored in a table during the design phase, and
during synthesis, a train of bandlimited pulses is formed by pe-
riodically retrieving samples from that table, typically adding
them when they overlap [7]. Filtering is again used to obtain
bandlimited approximations of classical waveforms. Brandt de-
veloped the bandlimited step (BLEP) method, which is a varia-
tion of this idea: a correction function is added to the trivial clas-
sical waveforms to reduce aliasing [8]. The correction function
is obtained as the difference of an approximately bandlimited
step function and an ideal unit step function [6], [8].

In alias-suppressing methods, the spectral tilt of the input
signal is modified to reduce aliasing [6]. A straightforward
method is to oversample trivial waveforms and apply digital
low-pass filtering before downsampling the signal [9]. This is
inefficient for classical waveforms whose spectra decay slowly,
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such as about 6 or 12 dB per octave. Lane et al. proposed
a method that first distorts a sinusoidal signal and applies
a shaping filter to approximate the desired waveshape and
spectrum [10]. Viliméki used an integrated bipolar phase
counter signal to produce a parabolic waveform [11]. It can be
differentiated to obtain a sawtooth waveform, which suffers
from less aliasing than the trivial sawtooth waveform.

Recently, Pekonen and Viliméki have shown that it is pos-
sible to suppress aliasing with a postprocessing method, which
utilizes a high-pass or a comb filter, or both [12]. Timoney et
al. introduced a bandlimited impulse train generation algorithm
and derived other classic waveforms using a modified FM syn-
thesis [13].

The alias-free oscillator is ideally the most desirable case.
Human hearing mechanisms, however, result in a certain level
of aliasing being masked by neighboring harmonic peaks, which
allows room for finding more cost-effective algorithms within
the constraint of audio fidelity. In this paper, we introduce per-
ceptually alias-free techniques within the range of practically
used fundamental frequencies, using low-order fractional delay
(FD) filters in the framework of the BLIT method. The FD filters
examined include polynomial interpolators and allpass filters,
aiming at using only simple arithmetic without lookup tables or
numerically expensive functions. The quality and performance
will be evaluated based on comparison of the aliasing and the
masking curve from oscillators at high frequencies.

The next section begins with generating bandlimited impulse
trains. The impulse train is important in that it can be used as
not only an oscillator type on its own but also as a basic building
block to derive other types of oscillators by linear operations in
the BLIT method [7]. In addition, the simple structure facilitates
examining the operation of FD filters.

II. GENERATING BANDLIMITED IMPULSE TRAINS

A. Discrete-Time Impulse Train by Fractional Delay Filters

An impulse train s(¢) with period T in the continuous-time
domain is represented as

(e}

Z §(t —mT). (1)

m=—00

s(t) =

In order to generate the discrete-time impulse train, the impulse
train s(¢) must be bandlimited by a low-pass filter such that
harmonics above the Nyquist limit are rejected. The continuous-
time bandlimited impulse train sBL1T7C(t) may be expressed as
the convolution between the impulse train s(¢) and a low-pass
filter as

oo

SBLIT,c(t) = / s(v)he(t —v)dv = i he(t —mT) (2)

m=—00
— 00

where h..(t) is the impulse response of the low-pass filter. Equa-
tion (2) can be interpreted as a periodic superposition of replica
of impulse response h.(¢). By sampling it with sample period
T, the discrete-time version of the bandlimited impulse train is
obtained

Trigger impulses

I'—  Phase _/<\ T Fractional Out
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Fig. 1. (a) Diagram for generating a discrete-time bandlimited impulse train.
(b) The trajectory of the phase counter. The circles indicate when the impulse
response of an FIR FD filter is produced in the case that the length of the FD
filter is four.

oo

sLIT,d(N) = Z he(nTs —mT) = Z ha(n —mDy)

3)
where n is the sample index, hq(n) is a sampled sequence of
he(nTs) at nTs and Dy = T/T; is the period of the ban-
dlimited impulse train in samples. Since 7' is not necessarily
an integer multiple of T, the sampled position of h.(t) at each
period generally varies. In other words, sBLIT@(n) cannot be
computed from only hg(n) when Dy is non-integer. In order
for spLrT,¢(n) to be calculated in the discrete-time domain, we
need to define another discrete-time impulse response iz,l(n)
which is obtained by shifting h4(n) by the fractional time

ha(n,m) =hq (n — d(m)) = he (nTs — d(m)Ty), (4)
sLIT,d(N) = Z ha (n — Diye(m)) (5)

m=—00

where Diy(m) and d(m) are the integer and fractional parts of
mDy, respectively. From (4) ha(n) is computed by sampling
he(t) with the time offset of d(m)Ts. Consequently, the dis-
crete-time bandlimited impulse train sBLIT@(n) is expressed as
successive impulse responses of an FD filter fzd(n) whose co-
efficients are updated every period. Fig. 1(a) shows a diagram
to generate the bandlimited impulse train sgrir,4(n). The phase
counter performs a special modulo “D(” operation which decre-
ments phase in samples by one and, when it goes down below
zero, Dy is added to it. Right before the phase counter wraps
around, it triggers an impulse to the fractional delay filter while
the fractional part d(m) of the phase counter determines the co-
efficients of FD filter h4(n). The trajectory of the phase counter
is shown in Fig. 1(b) where the length of the FD filter is four.
As such, a sequence of bandlimited impulses can be generated
for a new fractional delay every period.

Since the FD filter is obtained by sampling a continuous-time
low-pass filter h.(t), aliasing contained in the discrete-time ban-
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Fig. 2. Waveform and magnitude spectrum of bandlimited impulse trains using
(a), (b) rounded-time unit impulses and (c), (d) the sampled sinc functions. The
fundamental frequency is 2631 Hz (MIDI note #100) and the sampling rate is
44.1 kHz. Note that the spectral envelope of the rounded-time impulse train
follows a sinc function.

dlimited impulse train sgrir,4(n) is totally determined by the
spectrum of the corresponding continuous-time low-pass filter.
Accordingly, the aliasing reduction in the bandlimited impulse
train ends up with designing a continuous-time low-pass filter,
which finds an optimal solution in the trade-off between com-
putational complexity and roll-off rate. In the next section, we
will examine different types of continuous-time low-pass filters
to obtain the FD filters.

B. Rectangular Pulse and the Sinc Function

The simplest FD filter is a rectangular pulse which is referred
to as the zero-order hold

Ts
hr(t) — 1, |t| < 2
0, otherwise.

(6)

By (6), we obtain a single unit-sample pulse every period at the
nearest sample time to which the fractional delay is rounded,
as shown in Fig. 2(a). The Fourier transform of the rectangular
pulse H,.(f) is given as a sinc function
(1) = sine (£ @
s [s

where f is the sampling rate (Hz) and sinc(z) is defined as
sin(wx)/(wz). Although the computation is simple, the rect-
angular pulse as a low-pass filter causes significant aliasing as
shown in Fig. 2(b) where the aliasing is enveloped by the sinc
function in (7); specifically, the spectral envelope of the first
generation of aliasing is obtained by wrapping the main lobe
of the sinc function.

Applying the duality between time and frequency domain to
the rectangular pulse, an ideal low-pass filter can be obtained

fs
H.(f) = {17 <5 @®)

0, otherwise.

As such, its inverse Fourier transform is given as a sinc function
with a zero-crossing interval of one sample

. t
hs(t) = sinc <Ts> . 9)
This is known as the ideal bandlimited interpolator because it
perfectly reconstructs a continuous-time signal from its sampled
values, removing harmonics above the Nyquist limit. Therefore,
the bandlimited impulse train using this FD filter does not cause
aliasing at all as seen in Fig. 2(d). In general, the ideal bandlim-
ited interpolator is not realizable with the signal flow graph in
Fig. 1, because it is noncausal and infinitely long. However, it
turns out that a periodically repeated sinc function can be repre-
sented in closed form because the impulse train convolved with
the ideal bandlimited interpolator has a finite number of har-
monic sinusoids in the frequency domain. This idea was gener-
alized as a method called Discrete Summation Formulae (DSF)
[4], which is applied to the BLIT as

oo

sLIT,d(n)= Z sinc(n — mDy)

m=—00

_ Sln(:lrM’l’L/Do) (10)

Dysin(mn/Dg)
where M is the number of harmonics [3], [7]. While this method
generates an alias-free impulse train in theory, it encounters a
numerical problem in practice when the denominator is close to
zero. In that case, the division of two sine functions is usually
replaced with a constant in (10), which can generate a discon-
tinuity when the numerical precision is limited. Another draw-
back of the DSF method is that it assumes that the waveform is
invariably periodic so that an artifact may be generated by an
instant change in frequency [14].

An alternative method is “Sum of Windowed Sincs (BLIT-
SWS)” where the FD filter is given as a windowed sinc func-
tion. The window is chosen such that its spectrum has a steep
roll-off, for example, Blackman or Kaiser window. BLIT-SWS
is typically implemented using a lookup table with linear inter-
polation or polyphase lookup tables [6], [7]. As a result, the win-
dowed sinc function with a limited resolution allows a certain
amount of aliasing, which is determined by the window type, the
number of zero-crossings and samples per zero-crossing. They
are in fact involved with FIR filter design using windows. The
BLIT-SWS method generates very effective quasi-bandlimited
impulse trains with a large number of zero-crossings, such as,
16 or 32. However, it requires not only a large memory for the
lookup table, but also the superposition of neighboring bandlim-
ited impulses is likely to occur at high fundamental frequencies.
For example, if the number of zero-crossings in a windowed
sinc is 16, neighboring bandlimited impulses are superposed at
the fundamental frequencies above f;/16. This requires addi-
tional computation as much as the number of superposed sam-
ples [14]. Therefore, the number of zero-crossings should be
carefully chosen, trading off between the amount of aliasing and
the efficiency.

C. Polynomial Interpolators

Polynomial interpolators are another group of FD filters.
They have a similar feature to windowed-sinc functions in that
the order of polynomials generally corresponds to the number
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of zero-crossings in the windowed sinc, both associated with
the length of bandlimited pulses. Polynomial interpolators can
be, however, computed at arbitrary times only with multiplica-
tion and addition without resorting to lookup tables. This is the
primary advantage over windowed sinc functions, which have
a limited resolution restricted by the size of the lookup table.
At high orders, however, polynomial interpolators are usually
impractical due to proportionally complicated coefficients.
Therefore, we will focus on low-order polynomial interpolators
up to order three. This also limits the width of bandlimited
pulses up to four samples so that the overlapping between ban-
dlimited pulses will not occur at the fundamental frequencies
below f./4. There are a variety of known polynomial interpo-
lators [15], [16]. Lagrange interpolators and the B-spline are
chosen here due to their distinct characteristics in the frequency
domain and common use in signal processing.

1) Lagrange Interpolator: Lagrange interpolators can be
seen as approximating the sinc function in a maximally flat
manner at dc in the frequency domain [17]. This is a useful
property for applications of modeling musical instruments,
whose fundamental frequency is usually low. Meanwhile,
Lagrange interpolator is known to be expressed as a windowed
sinc function using a scaled binomial window [18], [19].

The Lagrange interpolators for order 1, 2, and 3 as contin-
uous-time low-pass filters are defined as

L+ 4, —1<4£ <0,
Lhit)=91-+ 0<Lt<1 (11)
0, otherwise,
(1 t t 3 t 1
t t 1 t 1
w=4 (1+#)(1-4), -t <3 (12)
1 1 3
s(1-£)(2-4). 14 <3
L 0, otherwise,
(1 t t t t
F(+8) 2+ 8) (3+a) —2sd<m
(=) () (e £). 1< fco
I3(t)=< 1 t t t t
3(1) 5(1+T—S)(1—TS)(2—T—S), 0< £ <1
1
(-6 (8 1) 1< <2
L 0, otherwise.
(13)

When the Lagrange interpolators in (11)—(13) are used as an
FD filter, one instance per one polynomial segment is sampled
depending on the fractional delay. For example, in the case of
the third-order Lagrange interpolator, when the phase counter
in Fig. 1 is between —2 and 2, each coefficient is obtained by
plugging itin ¢/ T of each polynomial segment. Then, the phase
counter wraps around by adding D, for next period. Using a fast
algorithm, the Nth-order Lagrange FD filter coefficients can be
evaluated with about 4N — 2 multiplications and N additions
[19]-[21]. Therefore, the four coefficients can be computed only
with ten multiplications and three additions.

Fig. 3(a), (c), and (e) shows the bandlimited impulse trains
generated using the Lagrange interpolators. Note that the
bandlimited pulses in the second and third order fluctuate
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Fig. 3. Waveform and magnitude spectrum of bandlimited impulse trains using

(a), (b) first-order (c), (d) second-order, and (e), (f) third-order Lagrange inter-
polators. The fundamental frequency is 2631 Hz (MIDI note #100) and the sam-
pling rate is 44.1 kHz. The dashed lines are obtained by Fourier transforms of
Lagrange interpolators.

between positive and negative levels as in the sinc function.
Fig. 3(b), (d), and (f) shows the corresponding spectra. The
dashed lines indicate the envelopes of harmonic peaks and
aliasing, which are determined by Fourier transforms of the
Lagrange interpolators given by [22], [23]

1 .
Li(f) = f_3S1nC2 (%)

1. 1 2

Lo(f) = —5351n03 (%) (1 +3 (27%) ) (15)
1. 1 2

Li(f) = f—s4$1nc4 (%) (1 + G (27r£> ) . (16)

In (15) and (16), Lo(f) and Ls(f) contain the quadratic terms
as a function of frequency. They work as tilting the spectrum
upward with regard to dc, indicating that they are related to the
maximal flatness of Lagrange interpolator at dc. As a result, har-
monic peaks in the high frequency range are less attenuated,
whereas the alias reduction by the power of sinc function is can-
celed out as much.

2) B-Spline Interpolator: B-splines interpolators are bell-
shaped polynomial interpolators constructed by iterative con-
volution of a rectangular pulse [24]. Therefore, the first-order
B-spline interpolator is obtained by convolving the rectangular

(14)
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pulse in (6) with itself, which is the same as the first-order La-
grange interpolator, [;(¢) in (11). The second and third-order
polynomials are also obtained by successive convolution with
the rectangular pulse

( 2
1 t 3 3 t 1
§(T_S+§ —3S7 <73
2
3 t 1 t 1
by(t) = z—(T—s) 257 <3 (17)
2
1 t 3 1 t 3
§(T_s_§)7 ST <3
L 0, otherwise
(1 e\? t
E(2+T—), —2< A <1
2 t 2 1 t 3 t
$ () -3 (2)) 1< <o
ba(t) = 2 3 18
OV (#) () osk <
3
1 t t
L2-4) 1< 4 <2
\,0 otherwise.

Fig. 4(a) and (c) shows the bandlimited impulse trains using
the second and third B-spline interpolators. As in the Lagrange
interpolators, pulse instances are sampled from each polynomial
segment in (17) and (18) every period, according to the phase
counter. By the convolution theorem, the Fourier transforms of
the B-spline interpolators are simply given as the power of sinc

function
1 . f
Bs(f) = f—gsmc?’ <ﬁ> (19)
Bs(f) = %Sinc‘* <fi> : (20)

As seen in Fig. 4(b) and (d), the aliasing is significantly reduced
compared to the Lagrange interpolators for the same order. This
is also apparent from comparison of the Fourier transforms in
(15) and (16) to (19) and (20) where the B-spline interpola-
tors consist of only the power of sinc function whereas the La-
grange interpolators contain the additional spectral tilting fac-
tors, which boost the level of aliasing. Though harmonic peaks
in the high-frequency range are attenuated more in the spectrum
of the B-spline interpolators, the level is only —3 dB at 10 kHz
and —6.9 dB at 15 kHz with the 44.1 kHz sampling rate, and if
necessary, can be equalized by a one-pole one-zero filter.

In general, when the derivative of a polynomial is contin-
uous, the polynomial has approximately —6 dB per octave
decay relatively to its derivative in spectrum. The Nth-order
B-spline polynomial has a property that its derivatives up to the
Nth-order are continuous so that they have —6(N + 1) dB per
octave roll-off in spectrum. On the other hand, the Lagrange
interpolator has a discontinuity in the polynomial functions or
its derivatives, which is seen to slow down the roll-off rate.
This is the underlying principle that the B-spline interpolators
are more effective in reducing the aliasing.

D. Allpass Fractional Delay Filters

The FD filters discussed above are represented as an FIR filter
whose impulse response is given as sampled instances of con-
tinuous-time low-pass filters. On the other hand, allpass FD fil-
ters are in a different category in that they are IIR filters and
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Fig. 4. Waveform and magnitude spectrum of bandlimited impulse trains using
(a), (b) second-order and (c), (d) third-order B-spline interpolators. The funda-
mental frequency is 2631 Hz (MIDI note #100) and the sampling rate is 44.1
kHz. The dashed lines are obtained by Fourier transforms of B-spline interpo-
lators.

have no explicit connection to their continuous-time versions.
The details of allpass FD filters are examined in [19]. Here, the
first- and second-order Thiran allpass filters are chosen to gen-
erate the bandlimited impulse train. The Thiran allpass filter is
a family of allpass filters that has a maximally flat group delay
at dc. The property is well suited to musical applications like
Lagrange interpolator [19].

The first-order allpass filter is computed by the following re-
cursive equation:

y(n) =arz(n) + z(n — 1) — a1y(n — 1) (21)
where the coefficient a1 is computed by setting its dc delay to
D

1-D

“EIED

(22)
The delay D is chosen to be between 0.418 and 1.418, which is
the optimal range for the first-order allpass filter to have maxi-
mally flat delay over all frequency range [19]. This is also related
to the effective length of the first-order allpass filter, which is de-
fined as the smallest nonnegative integer time index by which
99% of the total energy is accumulated [26]. For the chosen
delay D, the fractional delay d is between —0.582 and 0.418
(d = D — 1), which corresponds to the effective length within
three samples in Fig. 5. This indicates that the first-order allpass
filter can be approximated to an FIR filter with the length of four
samples at most.

When the allpass filter is used to generate a bandlimited im-
pulse train, the input is given as a single impulse. Therefore,
(21), instead of using the two multiplications and two additions
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per sample, can be decomposed into more efficient segments by
calculating the first two outputs individually in (21)

ai, n=20
y(n) = {1—a%, n=1 (23)
—a1y(n — 1), otherwise.

That is, when the phase counter is between 0.418 and 1.418, the
first sample is computed by plugging it in D of (22) and the
second sample by using the result of the first sample. Then, as
the phase counter wraps around by adding Dy, the following
samples are recursively computed from the previous output by
multiplying with —a;. Note that, in comparison to polynomial
interpolators, once the coefficient a; is computed in the first seg-
ment, it is repeatedly used during a period. Fig. 6(a) shows that
the bandlimited impulse train using the first-order allpass filter.
As explained, the bandlimited impulse is similar to the result
using an FIR filter with the length of four samples. Fig. 6(b)
shows the magnitude spectrum of the bandlimited impulse train
using the first-order Thiran allpass filter. It is seen to have con-
siderable aliasing but there is a decent suppression below the
fundamental frequency, which is generally the most audible re-
gion. The aliasing level in the region is seen to be lower than
using the linear interpolator and close to using the second-order
Lagrange interpolator.

A drawback of the Thiran allpass filter is that a division is
necessary in (22) every period. It can be replaced with multipli-
cations by using the following approximation:

1-D v

a) = ——= =

T D" 1_V:1/(1—|—1/)(1—|—1/2)(1—|—1/4)... (24)

where

Since v is much less than one (—0.319 < v < 0.191) and
factors in (24) have a form of 1 4 vP°we” °f 2 (24) converges
fast. For example, the first three factors amounts to about 99%
and the first four factors to 99.9% of the coefficient.
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Fig. 6. Waveform and magnitude spectrum of bandlimited impulse trains
using (a), (b) the first-order and (c), (d) the second-order allpass filter. The

fundamental frequency is 2631 Hz (MIDI note #100) and the sampling rate is
44.1 kHz.

The second-order Thiran allpass filter is given as the fol-
lowing recursive equation:

y(n)=azx(n)+arz(n—1)+z(n—-2)-ar1y(n—1)—azy(n—2)

(25)

and the coefficients are computed with regard to the delay D
[25]

D -2

D+1

(D-1)(D-2)
(D+1)(D+2)

The delay D is chosen to be kept between 1.5 and 2.5. The frac-
tional delay d for the range is between —0.5and 0.5 (d = D—2).
It corresponds to the effective length within 4 in Fig. 5, indi-
cating that the second-order allpass filter can be approximated
to an FIR filter with the length of 5 samples at most.

As in the first-order allpass filter, (25) can be decomposed
into an efficient form of segments

ay = as = (26)

a2, n=20
_ ) (1—az)ay, n=1
y(n) B (1 — az) (1 + as — a%) 5 n=2 (27)

—a1y(n — 1) — agy(n — 2), otherwise.

When the phase counter is between 1.5 and 2.5, the first sample
is triggered by plugging it in (26). Once a; and a9 are computed,
they can be reused in next samples during a period. Fig. 6(c)
shows the bandlimited impulse train using the second-order all-
pass filter, which is approximately one sample longer than using
the first-order allpass filter. In the spectrum in Fig. 6(d), the
aliasing is significantly reduced around the fundamental fre-
quency. The result is seen to be close to that of using the third-
order Lagrange interpolator. It is surprising that the harmonic
peaks are slightly attenuated also when first- and second-order
allpass filters are used, see Fig. 6(b) and 6(d). The attenuation
at the Nyquist limit is in both cases about 3.9 dB, which is less
than for Lagrange or B-spline interpolators, cf. Fig. 3 and Fig. 4.
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The divisions in (26) also can be avoided by using the fol-
lowing approximations:

D—2__2%—I/1

a1:—2

D+1 “1-u
1
:—2(1—1/1)(14—1/1)(1—}—1/12)(1+1/f)..., (28)
a1 D—-1 0,1%—1/2
ar = — — T/ = ——
2 D+2 21—y
1
:—%(Z—Vz)(l+1/2)(1+1122)(1+1/§)...,(29)
where
3-D 2-D
V] = ——— Vg = ——.
! 4 2 4

Since v is between 0.125 and 0.375 and v» is between —0.125
and 0.125, (28) and (29) converge fast as well, so that the coeffi-
cients can be well approximated by the first three or four factors.

III. GENERATING BANDLIMITED CLASSIC WAVEFORMS

The principle of the BLIT method is that classic waveforms
such as sawtooth, square, and triangular can be derived from
a bandlimited impulse train via linear operations which do not
introduce new harmonics; therefore, they also remain bandlim-
ited [7]. We begin with discussing the linear operations, then
proceed to generating a variety of waveforms found in analog
synthesizers. All waveforms presented here will be based on
the bandlimited impulse trains using the third-order B-spline
interpolator because it produced the best result in reducing the
aliasing.

A. Leaky Integrator and DC Offset

Sawtooth, square and triangular waveforms have a —6 dB or
—12 dB per octave roll-off in spectrum. The spectral roll-offs
correspond to the functions of frequency, 1/f or 1/f2, which
can be analytically performed by single or double integrations.
In the BLIT method, the integration is performed by a leaky
integrator given as a simple one-pole filter

y(n) = z(n) + (1 = ejy(n - 1),

where the leak rate € is greater than zero so as to avoid overflow
by numerical errors, such as from quantization.

In general, it is desirable to set the leak rate € to a small value
(e.g., € = 0.005) such that the spectral envelope rolls off from
low frequencies and the shape of the waveform is close to the
original. However, the small leak rate can be problematic in two
aspects. First, the aliasing below the fundamental frequency can
be boosted by the leaky integrator. For example, if an aliasing
component is located one octave below the fundamental fre-
quency, the level of the aliasing component will increase by 6 dB
by the leaky integrator. One way of preventing it is to increase
the leak rate in high fundamental frequencies so that the spec-
tral envelope starts to roll off near the fundamental frequency,

and yet, increasing the leak rate can make the waveform sound
brighter and out of shape. Consequently, varying the leak rate
depending on the fundamental frequency will be appropriate,
especially for high fundamental frequencies where the aliasing
is the main concern and the number of harmonics is small. An-
other method is to use a highpass filter such as a dc blocker. Ac-
tually, the dc blocker can be used to reduce the aliasing below
the fundamental frequency [12]. However, it requires a trade-off
between the low-harmonic attenuation and the sharp notch at dc
which increases the transient behaviors [27].

The second problem with the small leak rate is associated
with the dc offset. Since the bandlimited impulse trains exam-
ined above are expressed as a series of impulse responses of
low-pass or allpass filters, they preserve a dc component by
its nature. Therefore, integrating the bandlimited impulse trains
with the small leak rate can cause the waveform to drift upward
and possibly generate an audible artifact by clipping limit. The
dc offset is determined by the average value over a period of
bandlimited impulse trains. In the steady state, therefore, the dc
offset remains at a constant level, which can be removed by sub-
tracting the precomputed dc level. For example, the dc offset of
Lagrange and B-spline interpolators is explicitly given as

1 f

DC Oﬂsetstead —state — 75 — 5
Y DO fs

(30)

where Dy is the period of the bandlimited impulse train in sam-
ples, because their sum of coefficients is equal to one. The dc
offset of the allpass FD filters is also approximated to (30) as
long as the fundamental frequency is not so high that the sum of
coefficients converges to one within a period.

On the other hand, in the non-steady state, for example, when
the fundamental frequency or other parameters changes on the
fly, the transient dc offset cannot be removed only with the pre-
computed dc offset. Even the dc blocker is not effective to avoid
it because it is not free of the transient dc offset, either, espe-
cially when its pole is located near the unit circle. A method
to fix the problem is to update parameters every period such
that the waveform is held in a steady-state during each period.
Then, the dc level will remain constant during each period and
can be removed by subtracting the precomputed dc offset. The
phase counter in Fig. 1 actually implements the idea by wrap-
ping around with a new sample period Dy every period. Though
the period-based update limits a modulation resolution to the
sample period so that an artifact can be generated in audio-rate
modulations with a large depth, it generally works well for most
modulations such as by low frequency oscillator (LFO) or en-
velope control.

Another source of the transient dc offset is the initial state of
the waveforms. It can be fixed up by setting appropriate initial
conditions to the phase counter and the leaky integrator. More
details will be explained in each waveform generation below.

B. Sawtooth Waveform

The sawtooth waveform has harmonics at all integer
multiples of the fundamental frequency with a —6 dB per
octave roll-off. Therefore, it can be generated by subtracting
the dc offset from the BLIT and integrating it as in Fig. 7(a)
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Fig. 7. Diagrams for generating BLIT-based oscillators: (a) sawtooth,
(b) square, and (c) triangular waveforms.

[7]. Fig. 8(a) shows a sawtooth waveform derived from the
BLIT using the third-order B-spline interpolator. It appears as
a falling waveform due to the subtraction of the dc offset. Its
amplitude ranges approximately from —0.5 to 0.5 because the
sum of the bandlimited impulses is about one, which
becomes the peak-to-peak level. In order to avoid the initial
drifting by the transient dc offset, the initial condition of
the phase counter in Fig. 1 must be synced to the initial
condition of the leaky integrator. The relation is given as
Integratory,itial condition=(Phase Counteriyitial condition/ Do)
—0.5. In Fig. 8(a), the initial conditions were set to Dy/2 and
0, respectively by the relation such that the waveform starts
from zero. Fig. 8(b) shows the magnitude spectrum of the
sawtooth waveform. It is similar to the spectrum of the BLIT
in Fig. 4(d) except that the aliasing at high frequencies is
moderately suppressed by the leaky integrator. The deviation
from the dashed line (—6 dB per octave slope) is caused by the
low-pass filtering of the third-order B-spline interpolator. As
discussed before, it is not significantly audible and, if
necessary, can be compensated by a one-pole one-zero filter.

C. Bipolar BLIT and Square Waveform

The square waveform has harmonics at odd multiples of the
fundamental frequency with a —6 dB per octave roll-off. The
odd harmonics can be generated by a bipolar BLIT whose pulses
alternate sign. Since the dc offset is canceled out by the bipolar
BLIT, the square waveform can be generated by only integrating
the bipolar BLIT as shown in Fig. 7(b) [7]. There are several
known methods to generate the bipolar BLIT using a BLIT. The
simplest method is to alternate the sign of the impulse and set
the phase counter to modulo Dy /2 operation [7]. Other methods
include using a difference of two BLITs and a combination
of a BLIT with an FIR comb filter [2], [7]. Fig. 8(c) shows a
square waveform derived by integrating the bipolar BLIT using
the third-order B-spline interpolator. In order to avoid the ini-
tial drifting in the square waveform, the initial condition of the
leaky integrator must be set to either the minimum or maximum
level, which is —0.5 or 0.5 in this case. The choice is deter-
mined by the sign of the impulse in the BLIT. That is, if the
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Fig. 8. Waveform and magnitude spectrum of (a), (b) sawtooth (c), (d) square,
and (e), (f) triangular signals. They are derived from the BLIT using the third-
order B-spline interpolator. The fundamental frequency is 2631 Hz (MIDI note
#100) and the sampling rate is 44.1 kHz. The dashed lines are the roll-oft slope
of (b), (d) —6 dB per octave and (f) —12 dB per octave. The leak rate is set to
0.01.

impulse starts with positive sign, the initial value of the leaky
integrator must be set to —0.5 such that the waveform jumps to
0.5 by the integration of the B-spline coefficients, and vice versa.
Though the initial condition of the phase counter does not influ-
ence the initial drifting, the complete shape of the first period
can be obtained by setting it to Dy /2. Fig. 8(d) shows the mag-
nitude spectrum of the square waveform, which contains only
odd harmonics and sparser aliasing as much.

D. Triangular Waveform

The triangular waveform has harmonics at odd multiples of
the fundamental frequency with a —12 dB per octave roll-off.
Therefore, it can be generated by integrating the bipolar BLIT
twice as shown in Fig. 7(c) [7]. Due to the successive integra-
tion, it requires more restricted conditions to avoid the initial
drifting. Since the triangular wave is obtained by integrating the
square wave as well, the initial conditions for the square wave
above are required. On top of that, the initial condition of the
phase counter must be set to a quarter period (Dg/4) and the ini-
tial condition of the second integrator to zero. These conditions
enable the triangular waveform to start from zero and change its
slope after a quarter period without the initial drifting as shown
in Fig. 8(e). While the amplitudes of the sawtooth and square
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Fig. 9. Diagrams for generating BLIT-based oscillators: (a) PWM, (b) hard-
sync, and (c) super-saw.

waveforms are determined by the integration of the FD filter co-
efficients ranging between —0.5 and 0.5, a triangular waveform
needs fix-up for the amplitude scaling by the second integra-
tion. The scaling factor is derived by setting the integration over
a quarter period of a square waveform equal to the peak value
of a triangular waveform (= 0.5). This results in the scaling
factor of 4/ Dy, which is represented as multiplication by ¢ in
Fig. 7(c). Fig. 8(e) and (f) shows the triangular waveform and
its spectrum derived from the bipolar BLIT. It is seen that the
aliasing is reduced more by the second integration, compared to
the square waveform.

E. PWM

Pulse width modulation (PWM) is a modulation technique
to create a rich spectrum by modulating the width of a square
waveform. It requires a square waveform with a variable duty-
cycle, which can be generated by integrating a difference of two
BLITs as shown in Fig. 9(a) [7]. The pulse width can be con-
trolled by synchronizing the phase counter of BLIT with nega-
tive sign to the phase counter of BLIT with positive sign. The
phase difference k is set to wDo(0 < w < 1) where w is
the duty-cycle and Dy is a period in samples. Fig. 10(a) shows
a PWM waveform derived from the bipolar BLIT using the
third-order B-spline where the duty-cycle is set to 30%. Note
that the waveform is shifted up by 0.2. It is caused by the dc
cancellation in the bipolar BLIT such that the integration over a
period is zero. Though it makes the waveform drift up or down
by a time-varying modulation, the level of drifting is limited
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Fig. 10. Waveform and magnitude spectrum of (a), (b) PWM (c), (d) Hard-sync
sawtooth waveform, and (e), (f) super-saw. They are derived from the bandlim-
ited impulse train using the third-order B-spline. The fundamental frequency is
2631 Hz (MIDI note #100) and the sampling rate is 44.1 kHz. In the hard-sync
sawtooth waveform, the fundamental frequency of the slave oscillator is 3800
Hz.

to the range between —0.5 and 0.5. Fig. 10(b) shows the spec-
trum of the PWM waveform. The spectral envelope is seen to
be irregular and even harmonics are also generated due to the
asymmetry of the waveform between the positive and negative
shapes.

FE. Hard-Sync

Hard-Sync is another modulation technique to produce a wide
variety of timbres by synchronizing two oscillators, a master
and a slave. The oscillator synchronization is performed by re-
setting the phase of the slave oscillator every time the master
oscillator cycles around [8]. The slave oscillator usually has a
higher fundamental frequency than the master’s, which asso-
ciates the master with the pitch and the slave with the shape
of the waveform. Brandt introduced a method to generate a
hard-sync sawtooth waveform using the BLIT (and also BLEP)
[8]. The BLIT-based hard-sync waveform is represented by the
sum of the master and slave BLIT as in Fig. 9(b). The scaling
factor r for the master BLIT is determined by the fractional part
of T,,/Ts where T,,, and T are the period of the master and
slave, respectively. In the BLIT generation scheme here, the
synchronization is carried out by replacing the phase counter
of the slave BLIT with that of the master BLIT whenever the
master wraps around. Fig. 10(c) shows the hard-sync waveform
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using the master and slave BLIT. The synchronization occurs
about every 16.8 sample, corresponding to the sample period of
the master BLIT. The spectrum is presented in Fig. 10(d). Inter-
esting sounds are obtained from time-varying spectrum, which
is controlled by the fundamental frequency of the slave oscil-
lator.

G. Super-Saw

Super-Saw is a special waveform to generate thick string-
type sounds, originally created by Roland in their JP-8000 and
JP-8080 analog modeling synthesizers [28]. The rich sound is
achieved by the chorus effect among slightly detuned sawtooth
waveforms. In the BLIT method, it can be emulated by inte-
grating the sum of N BLITs (typically, N = 7) as shown in
Fig. 9(c). Fig. 10(e) and (f) shows the waveform and its spec-
trum. The 6 BLITs were detuned by 7, 14, 21 cents flat and 4, 8,
12 centers sharp with regard to the fundamental frequency [29].

IV. EVALUATION AND COMPARISON

A. Perceptual Evaluation

The bandlimited oscillators using low-order FD filters con-
tain aliasing as shown in the previous spectra. The human au-
ditory system can render the aliasing inaudible in certain con-
ditions [30]. The main psychoacoustic phenomenon involved is
masking [30]. That is, if an aliased component is located near a
harmonic peak and its level is below a certain level, it is masked
by the sensory system so that the aliasing is not perceived. An-
other aspect is the hearing threshold in quiet. Especially, the
hearing threshold level dramatically increases above 15 kHz
[30].

The aliasing in the bandlimited oscillators generally becomes
more audible for higher fundamental frequencies because the
level of the aliasing relatively increases. Therefore, the sound
quality of the bandlimited oscillators can be evaluated by
identifying the maximum fundamental frequency up to which
the aliasing is not audible. The most straightforward method
to find it is listening to the oscillators in person, for example,
by sweeping the fundamental frequency or comparing it to
an alias-free reference sound. However, such methods are
somewhat arbitrary depending on subjects or audio systems
and settings to play the oscillators. Therefore, an objective
approach based on psychoacoustic models is necessary.

Here we propose a method of evaluating the bandlimited os-
cillators by comparing their masking curves with the levels of
aliased components. This is based on computational models
of hearing threshold and masking approximated from exper-
imental data [30]. The hearing threshold curve used for this
method is given by [31]

f —-0.8 )
o _ 656—0.6(%—3.3)
1000

RV Y
+10 1000 31

where f is frequency in Hz and the level is represented as ab-
solute sound pressure level (SPL). The masking is modeled as

T(f) = 3.64
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Fig. 11. Examples of spectra and masking curves of the bandlimited impulse
train using the third-order B-spline interpolator. The fundamental frequencies
are (a) 2631 Hz and (b) 6700 Hz, and the sampling rate is 44.1 kHz. The aliased
component that exceeds the masking threshold is marked with a circle.

a spreading function for a masker. We use the following asym-
metric spreading function:

S(L,Azy)

=Ly+ (—27—|—0.37M3,X{L1u — 40, O}H(Azb)) |AZ(,| (32)
where Az, is a difference between the frequency of a masker
and a maskee in Bark units, and Lj; is the level of masker
in dB SPL and 0(Az;) is the step function equal to zero for
Az, < 0 and one for Az, > 0 [32]. Note that the peaks of
the spreading functions are equal to the level of maskers. They
are actually shifted down by a certain level, which is typically
greater for a tonal masker than a noise-like masker. For the ban-
dlimited oscillators that contain nearly tonal maskers, the down-
shift level is set to 10 dB [33]. The masking curve is computed
by taking the maximum level among spreading functions of har-
monic peaks and the hearing threshold curve. To accommodate
harmonic peaks in the spreading function, the spectral power of
the oscillators should be scaled to dB SPL. The reference used
was set to 96 dB SPL for a sinusoid alternating between 1 and
—1, assuming that they are played at a sufficiently loud level.

Fig. 11 illustrates the computed masking curves of a bandlim-
ited impulse train for two fundamental frequencies. At 2631 Hz,
the aliased components are fairly abundant in high frequencies
but they are completely masked by harmonic peaks and the
hearing threshold, as seen in Fig. 11(a), implying that the os-
cillator is perceptually free of disturbances. On the other hand,
at 6700 Hz, a single aliased component above the masking curve
is found, see Fig. 11(b), indicating that the tone contains audible
noise. By comparing the masking curve with the levels of aliased
components this way, the highest fundamental frequency up to
which the aliasing is not perceived can be found as a measure
of evaluating the bandlimited oscillators.

Table I presents the result for the examined bandlimited im-
pulse trains. As shown in the spectra, the B-spline interpolators
had higher fundamental frequencies than the others for the same
order in general. The aliased component exceeding the masking
curve was mainly found below the fundamental in the B-spline
and Lagrange interpolators, whereas it was around higher over-
tones in the Thiran allpass filters. It is because the aliased com-
ponents in the allpass filters are distributed more toward higher
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TABLE I
HIGHEST FUNDAMENTAL FREQUENCY THAT IS PERCEPTUALLY FREE OF
ALIASING FOR THE BANDLIMITED IMPULSE TRAINS

FD filters Fundamental frequency
First-order Thiran allpass 600 Hz
First-order Lagrange 1269 Hz
Second-order Lagrange 2239 Hz
Second-order B-spline 3228 Hz
Second-order Thiran allpass 3780 Hz
Third-order Lagrange 4143 Hz
Third-order B-spline 5784 Hz

frequencies as shown in Fig. 6(b) and (d). When only the fre-
quency range below the fundamental, which is the most dom-
inant disturbance, was compared, the highest fundamental fre-
quencies for the first and second-order allpass filters increased
to 2239 and 4220 Hz, respectively.

B. Comparison With Other Algorithms to Generate Sawtooth
Waveforms

Several quasi-bandlimited and alias-suppressing methods to
generate classic waveforms were reviewed in the beginning of
this paper. We compare the Lane, DPW, BLIT-SWS, and BLEP
methods to the BLIT method using the FD filters (BLIT-FDF)
in terms of the perceptual evaluation performed above and
efficiency in implementation. Among the examined FD filters,
the third-order B-spline interpolator was selected due to its
superiority in aliasing reduction. In the BLIT-SWS and BLEP
methods, an FIR filter was designed using the Blackman
window with 64 times oversampling and eight zero-crossings,
and linear interpolation was used for the table lookup.

Table II shows the highest fundamental frequency that is
perceptually alias-free for compared sawtooth generation algo-
rithms. The alias-suppressing methods such as Lane and DPW
had aliased components exceeding the masking curve at rela-
tively low fundamental frequencies. The oversampled version
of the DPW made a decent improvement. In the quasi-ban-
dlimited methods, the BLIT-SWS method turned out to have
the audible aliasing at a quite low fundamental frequency,
whereas the BLEP method using the same window resulted in
a significantly higher fundamental frequency. Both BLIT-FDF
and BLEP methods covered fundamental frequencies above
the highest tone of the piano, a C8 (4186 Hz), indicating that
they are perceptually free of aliasing within the practically used
frequency range. Note that there is a difference in the highest
fundamental frequency between the impulse train and sawtooth
waveform using the third-order B-spline interpolator in Tables I
and II. It is because the sawtooth waveform was scaled to be
kept between —1 to 1 after going through the leaky integrator,
which boosted the aliasing level.

Efficiency of those algorithms heavily depends on systems in
which they are implemented. In terms of memory consumption,
the DPW, DPW-2X and BLIT-FDF methods have an advantage
because they use only simple arithmetic without any lookup
tables. Lane’s method requires more computations, because it
uses a sine oscillator [10]. On the other hand, the BLIT-SWS

TABLE II
HIGHEST FUNDAMENTAL FREQUENCY THAT IS PERCEPTUALLY FREE OF
ALIASING FOR SAWTOOTH GENERATION ALGORITHMS. BOTH BLIT-SWS AND
BLEP USED BLACKMAN WINDOW WITH 64 TIMES OVERSAMPLING AND
EIGHT ZERO-CROSSINGS. BLIT-FDF USED THE THIRD-ORDER B-SPLINE

Sawtooth algorithms | Fundamental frequency

Lane 600 Hz
DPW 600 Hz
DPW-2X 1136 Hz
BLIT-SWS 1203 Hz
BLIT-FDF 4593 Hz
BLEP 5135 Hz

and BLEP require a wavetable for a windowed-sinc or a modi-
fied form, whose size determines the sound quality.

In terms of computational complexity, DPW and DPW-2X
are seen to be simpler than others, because they require only up
to several multiplications and additions per sample [11]. The
BLIT-FDF, BLIT-SWS and BLEP methods have an irregular
number of computations in common, because they compute
bandlimiting samples only at transition regions where the
sawtooth waveform wraps around, and otherwise produce zeros
or a trivial sawtooth waveform. To compute a bandlimiting
sample, the BLIT-FDF method using the third-order B-spline
interpolator requires up to three multiplications and two ad-
ditions as seen in (18), whereas the BLIT-SWS and BLEP
methods read a lookup table using linear interpolation, which
typically involves several multiplications and additions as
well as accessing memory twice. The number of bandlimiting
samples is proportional to the order of FD filters or the number
of zero-crossings in BLIT-SWS and BLEP (four and eight
samples in the compared algorithms, respectively). Though
these algorithms require conditional logic to identify transition
regions and accordingly more lines of instructions, the average
number of computations per sample is quite small, especially
at low fundamental frequencies. For example, when the period
is 100 samples (441 Hz at a sampling rate 44.1 kHz), the
BLIT-FDF method computes only four samples every period
and produces zeros during the rest of sample times before the
dc removal and integration.

In summary, this result shows that the compared algorithms
have both advantages and disadvantages in terms of the sound
quality and efficiency, so that a trade-off is necessary. Among
them, the proposed BLIT-FDF method is seen to be an opti-
mized solution in the sense that aliasing is effectively reduced
with relatively less computations and no lookup table.

V. CONCLUSION

It was shown that bandlimited impulse trains can be produced
as a sequence of a fractional delay filter’s impulse responses.
The fractional delay parameter is changed for every pulse, but
remains constant for the duration of each impulse response. This
new approach avoids the use of a lookup table and oversampling
of the prototype pulse, which are needed in previous BLIT im-
plementations. In the proposed method, the fractional delay pa-
rameter does not have to be quantized more coarsely than dic-
tated by the numerical accuracy.
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Three classes of FD filters, the Lagrange interpolation, the
B-spline, and the Thiran allpass filters were considered in
this paper. All classical synthesizer waveforms, such as the
sawtooth, square, and triangular signal, are obtained by leaky
integration of a uni- or bipolar pulse train generated using one
of these FD filters. An appropriate dc level must be subtracted
prior to integration. Furthermore, efficient new implementa-
tions for the pulse-width modulation, hard-sync effects, and the
super-saw oscillator were introduced.

The sound quality obtained with the different filters was eval-
uated by applying a masking curve model to each desired signal
partial. Additionally, a frequency-dependent hearing threshold
curve was applied to indicate that spectral components above
15 kHz or so are inaudible in the waveforms of interest. This
way it was possible to show as a function of the fundamental
frequency whether aliasing is audible or not for tones produced
with different FD filters. The fundamental frequency range
where aliasing is inaudible was reported for BLIT synthesis
using all three FD filters. The same evaluation was repeated
for bandlimited sawtooth waveforms generated with several
previous techniques and the best proposed method.

It was found that low-order FD filters can yield excellent
antialiasing oscillators. For the proposed fractional delay BLIT
synthesis, the third-order B-spline filter is the best among the
candidate FD filters. It can produce perceptually alias-free
waveforms up to the fundamental frequency of 5.8 kHz, which
is higher than the topmost tone in the piano. When a lower
sound quality can be tolerated or a smaller computational load
is required, the second-order B-spline or the second-order
Thiran allpass filter is recommended. Lagrange FD filters
cannot compete with these techniques, when alias suppression
and computational complexity are considered.
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