
LEARNING SPARSE FEATURE REPRESENTATIONS FOR MUSIC
ANNOTATION AND RETRIEVAL

Juhan Nam
CCRMA

Stanford University
juhan@ccrma.stanford.edu

Jorge Herrera
CCRMA

Stanford University
jorgeh@ccrma.stanford.edu

Malcolm Slaney
Yahoo! Research

Stanford University
malcolm@ieee.edu

Julius Smith
CCRMA

Stanford University
jos@ccrma.stanford.edu

ABSTRACT

We present a data-processing pipeline based on sparse
feature learning and describe its applications to music an-
notation and retrieval. Content-based music annotation
and retrieval systems process audio starting with features.
While commonly used features, such as MFCC, are hand-
crafted to extract characteristics of the audio in a succinct
way, there is increasing interest in learning features auto-
matically from data using unsupervised algorithms. We
describe a systemic approach applying feature-learning al-
gorithms to music data, in particular, focusing on a high-
dimensional sparse-feature representation. Our experi-
ments show that, using only a linear classifier, the newly
learned features produce results on the CAL500 dataset
comparable to state-of-the-art music annotation and re-
trieval systems.

1. INTRODUCTION

Automatic music annotation (a.k.a. music tagging) and re-
trieval are hot topics in the MIR community, as large col-
lections of music are increasingly available. Therefore,
tasks such as music discovery have become progressively
harder for humans without the help of computers. Exten-
sive research has been done on these topics [20], [11], [8]
[5]. Also, different datasets have become standards to train
and evaluate these automatic systems [19], [12].

Training for most automatic systems use audio
content—in the form of audio features—as the input data.
Traditionally well-known audio features, such as MFCC,
chroma and spectral centroid, are used to train algorithms
to perform the annotation and retrieval tasks. These “hand-
crafted” features usually capture partial auditory character-
istics in a highly condensed form, ignoring many details
of the input data. While such engineered features have
proven to be valuable, there is increasing interest in find-
ing a better feature representation by learning from data in
an unsupervised manner. Unsupervised learning is usually
conducted either by mapping the input data into a high-
dimensional sparse space or by means of deep learning.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2012 International Society for Music Information Retrieval.

In this paper, we apply high-dimensional sparse feature-
learning to short-term audio spectrograms and construct
song-level features for music annotation and retrieval.

In summary, the contributions of this paper are as fol-
lows:

• We propose a data preprocessing method to make
feature-learning algorithms more effective.

• We demonstrate that the feature-learning algorithms
capture rich local timbral patterns of music, useful
for discrimination.

• We show that song-level features constructed from
the local features achieve results comparable to state-
of-art algorithms on the CAL500 dataset using only
a linear classifier, and furthermore outperform them
with a nonlinear classifier.

1.1 Recent Work

Lee et. al. proposed a Convolutional Deep Belief Network
(CDBN) and applied it to the audio spectrogram for music
genre and artist classification [14]. Dieleman et. al. also
employed the CDBN but on engineered features (EchoN-
est chroma and timbre features) for artist, genre and key
recognition tasks [6]. Our approach is similar to these sys-
tems in that the input data is taken from multiple audio
frames as an image patch and max-pooling is performed
for scalable feature-learning. However, we perform feature
learning with a high-dimensional single-layer network and
the max-pooling separately after learning the features [2].
While this can limit the representational power, it allows
faster and simpler training of the learning algorithms.

Henaff et. al. applied a sparse coding algorithm to a
single frame of constant-Q transform spectrogram and ag-
gregated them into a segment-level feature for music genre
classification [10]. Likewise, Schlter et. al. compared
Restricted Boltzmann Machine (RBM), mean-covariance
RBM and DBN on similarity-based music classification
[17]. Our approach is also similar to these pipelines. How-
ever, in our work we provide deeper insight on the learned
features by showing how they are semantically relevant.
In addition, we investigate the effect of sparsity and max-
pooling on the performance.

Finally, Hamel et. al. showed that simply PCA-whitened
spectrogram can provide good performance by combining
different types of temporal pooling [9]. Our approach is

Waveform Automatic
Gain Control

Time-Freq.
Representation

PCA
Whitening

Feature
Learning
Algorithm

Max-
Pooling Aggregation ClassifierAmplitude

Compression

Preprocessing Feature
Representation

Multiple
Frames

Figure 1: Data processing pipeline for feature representation. This takes an waveform as input and produces a song-level
feature for the classifier.

quite different from this work because we encode the PCA-
whitened spectrogram into a high-dimensional sparse space
and extract features from it.

2. DATA PROCESSING PIPELINE

We perform the music annotation and retrieval tasks using
the data processing pipeline shown in Figure 1. Each block
in the pipeline is described in this section.

2.1 Preprocessing

Data preprocessing is a very important step to make fea-
tures invariant to input scale and to reduce dimensionality.
We perform several steps of the preprocessing.

2.1.1 Automatic Gain Control

Musical signals are dynamic by nature and each song file
in a dataset has different overall volume due to different
recording conditions. Thus, we first apply Automatic Gain
Control (AGC) to normalize the local energy. In particular,
we employ time-frequency AGC using Ellis’ method [7].
The AGC first maps FFT magnitude to a small number of
sub-bands, computes amplitude envelopes for each band,
and uses them to create a time-frequency magnitude en-
velope over a linear-frequency scale. Then, it divides the
original spectrogram by this time-frequency envelope. As
a result, the AGC equalizes input signals so they have uni-
formly distributed spectra over frequency bins.

2.1.2 Time-frequency Representation

A time-frequency representation is an indispensable pro-
cessing step for musical signals, which are characterized
primarily by harmonic or non-harmonic elements. There
are many choices of time-frequency representations, each
one having different time/frequency resolutions and/or per-
ceptual mappings. In this paper, we chose a mel-frequency
spectrogram.

Our initial experiments—based on a spectrogram—
showed that using multiple consecutive frames as an in-
put unit for learning algorithms (which is analogous to tak-
ing a patch from an image) significantly improves perfor-
mance over using single frames. However, the FFT size
used for musical signals is usually large and thus con-
catenating multiple frames yields a very high-dimensional
vector requiring expensive computation for learning algo-
rithms. Using a moderate number of mel-frequency bins,
instead of the straight FFT, preserves the audio content
well enough, while significantly reducing the input di-
mension. We chose 128 mel-frequency bins, following

Hamel’s work [9], and will present results for various num-
bers of frames below.

2.1.3 Magnitude Compression

We compress the magnitude using an approximated log
scale, log10(1 + C|X(t, f)|), where |X(t, f)| is the mel-
frequency spectrogram and C controls the degree of com-
pression [15]. In general, the linear magnitude of each bin
has an exponential distribution. Scaling with a log function
gives the magnitude a more Gaussian distribution. This en-
ables the magnitude to be well-fitted with the ensuing PCA
whitening, which has an implicit Gaussian assumption.

2.1.4 Multiple Frames

As previously discussed, we take multiple frames as an
input unit for feature learning. This approach was used
in the convolutional feature-learning algorithm [14]. In
that work, however, the multiple frames are taken over the
PCA-whitening space where PCA is performed on single
frames. In our case, we apply the PCA to multiple consec-
utive frames for the reasons explained next.

2.1.5 PCA Whitening

PCA whitening is often used as a preprocessing step for
independent component analysis or other learning algo-
rithms that capture high-order dependency. It removes pair-
wise correlation in the input data domain and, as a result,
reduces the data dimensionality. Note that the PCA cap-
tures short-term temporal correlation as well because it is
performed on multiple frames (after vectorizing them).

2.2 Feature Representation

At this point, the input has been processed in a highly re-
constructible way so that the underlying structure of the
data can be discovered via feature-learning algorithms. In
this section, we describe how such algorithms reveal the
underlying structure.

2.2.1 Feature Learning Algorithm

We compare three feature-learning algorithms to encode
the preprocessed data into high-dimensional feature vec-
tors: K-means clustering, Sparse Coding and Sparse Re-
stricted Boltzmann Machine.

K-means Clustering: K-means clustering learns K cen-
troids from the input data and assigns the membership of
a given input to one of the K centroids. In the representa-
tional point of view, this can be seen as a linear approxima-
tion to the input vectors, x ≈ Ds, where D is a dictionary

(centroids) and s is an extremely sparse vector that has all
zeros but a single “1” that corresponds to the assigned cen-
troid. We use the encoded vector, s, as learned features.

Sparse Coding (SC): Sparse coding is an algorithm to rep-
resent input data as a sparse linear combination of elements
in a dictionary. The dictionary is learned using the L1-
penalized sparse coding formulation. In our experiments,
we optimize

min
D,s(i)

∑
i

∥∥∥Ds(i) − x(i)∥∥∥2
2
+ λ

∥∥∥s(i)∥∥∥
1

subject to
∥∥∥D(j)

∥∥∥2
2
= 1,∀j

(1)

using alternating minimization over the sparse codes s(i),
and the dictionary D [3]. We use the absolute value of the
sparse code s, as learned features.

Sparse Restricted Boltzmann Machine (sparse RBM):
The Restricted Boltzmann Machine is a bipartite undirected
graphical model that consists of visible nodes x and hidden
nodes h [18]. The visible nodes represent input vectors and
the hidden nodes represent the features learned by training
the RBM. The joint probability for the hidden and visi-
ble nodes is defined in Eq. 2 when the visible notes are
real-valued Gaussian units and the hidden notes are binary
units. The RBM has symmetric connections between the
two layers denoted by a weight matrix W , but no connec-
tions within hidden nodes or visible nodes. This particu-
lar configuration makes it easy to compute the conditional
probability distributions, when nodes in either layer is ob-
served (Eq. 3 and 4).

− logP (x,h) ∝ E(x,h) =
1

2σ2
xT x− 1

σ2

(
cT x + bTh + hTWx

)
(2)

p(hj |x) = sigmoid(
1

σ2
(bj+wTj x)) (3)

p(xi|h) = N ((ci + wTi h), σ2), (4)

where σ2 is a scaling factor, b and c are bias terms, and
W is a weight matrix. The parameters are estimated by
maximizing the log-likelihood of the visible nodes. This
is performed by block Gibbs sampling between two lay-
ers, particularly, using contrastive-divergence learning rule
which involves only a single step of Gibbs sampling.

We further regularize this model with sparsity by encour-
aging each hidden unit to have a pre-determined expected
activation using a regularization penalty:

λ
∑
j

(ρ− 1

m
(

m∑
k=1

E[hj |xk]))2, (5)

where {x1, ..., xm} is the training set and ρ determines the
target sparsity of the hidden unit activations [13].

Similar to K-means clustering and SC, we can interpret Eq.
4 as approximating input vectors, x, with a linear combi-
nation of elements from dictionary W . That is, x ≈ Wh

(ignoring the bias term, c). The advantage of RBM over
the two algorithms is that the RBM has an explicit encod-
ing scheme, h = sigmoid(1

σ2 (b+WT x) from Eq. 3. This
enables much faster computation of learned features than
SC.

2.2.2 Pooling and Aggregation

A song is a very long sequence of data. There are many
ways to summarize the data over the entire song. A typi-
cal approach to construct a long-term feature is aggregat-
ing short-term features by computing statistical summaries
over the whole song. However, summarizing all short-term
feature over a song dilutes their local discriminative char-
acteristics. Instead, we pool relevant features over smaller
segments and then aggregate them by averaging over all
the segments in a song.

Since the learned feature vectors are generally sparse
and high-dimensional, we performed max-pooling over seg-
ments of the song. Max-pooling is an operation that takes
the maximum value at each dimension over a pooled area.
This is often used in the setting of convolutional neural
networks to make features invariant to local transforma-
tion. In our experiments, it is used to reduce the smoothing
effect of the averaging. In Section 4 we discuss how the
pooling size is determined.

2.3 Classification

Music annotation is a multi-labeling problem. We tackle
this by using multiple binary classifiers, each predicting
the presence of an annotation word. The binary classifier
also returns the distance from the decision boundary given
a song-level feature. We used the distance as a confidence
measure of relevance between a query word and a song for
music retrieval.

2.3.1 Linear SVM

We use a linear SVM as a reference classifier to evaluate
the song-level feature vectors learned by different settings
of feature representation. We trained the linear SVM by
minimizing the hinge loss given training data. By combin-
ing the hinge loss for multiple SVMs as a single objective,
we trained them simultaneously, avoiding individual cross-
validation for each SVM and thereby saving computation
time [16].

2.3.2 Neural Network

We also applied a neural network to improve classification
performance. For simple evaluation, we used a single hid-
den layer. However, instead of the cross-entropy, which is
usually used as a cost function for a neural network, we
employed the hinge loss from the linear SVM above, so
that the penalty term is consistent between classifiers. That
way, performance difference can be attributed only to the
inclusion of the hidden layer.

m
el

-f
re

qu
en

cy

Electronica

20

40

60

80

100

120

Rock

20

40

60

80

100

120

Calming/Soothing

20

40

60

80

100

120

Exciting/Thrilling

20

40

60

80

100

120

Piano

20

40

60

80

100

120

DrumMachine

20

40

60

80

100

120

Sleeping

20

40

60

80

100

120

Wakingup

20

40

60

80

100

120

Rapping

20

40

60

80

100

120

Screaming

20

40

60

80

100

120

Electronica

20

40

60

80

100

120

Rock

20

40

60

80

100

120

Calming/Soothing

20

40

60

80

100

120

Exciting/Thrilling

20

40

60

80

100

120

Piano

20

40

60

80

100

120

DrumMachine

20

40

60

80

100

120

Sleeping

20

40

60

80

100

120

Wakingup

20

40

60

80

100

120

Rapping

20

40

60

80

100

120

Screaming

20

40

60

80

100

120

Wide-band energy
with strong

high-frequency
content

Electronica

20

40

60

80

100

120

Rock

20

40

60

80

100

120

Calming/Soothing

20

40

60

80

100

120

Exciting/Thrilling

20

40

60

80

100

120

Piano

20

40

60

80

100

120

DrumMachine

20

40

60

80

100

120

Sleeping

20

40

60

80

100

120

Wakingup

20

40

60

80

100

120

Rapping

20

40

60

80

100

120

Screaming

20

40

60

80

100

120

Harmonic patterns
with strong pitchness

Electronica

20

40

60

80

100

120

Rock

20

40

60

80

100

120

Calming/Soothing

20

40

60

80

100

120

Exciting/Thrilling

20

40

60

80

100

120

Piano

20

40

60

80

100

120

DrumMachine

20

40

60

80

100

120

Sleeping

20

40

60

80

100

120

Wakingup

20

40

60

80

100

120

Rapping

20

40

60

80

100

120

Screaming

20

40

60

80

100

120

Extremely low-freq.
energy and several

wideband and
transient patterns

Electronica

20

40

60

80

100

120

Rock

20

40

60

80

100

120

Calming/Soothing

20

40

60

80

100

120

Exciting/Thrilling

20

40

60

80

100

120

Piano

20

40

60

80

100

120

DrumMachine

20

40

60

80

100

120

Sleeping

20

40

60

80

100

120

Wakingup

20

40

60

80

100

120

Rapping

20

40

60

80

100

120

Screaming

20

40

60

80

100

120

Low-frequency
content with

harmonic patterns

Electronica

20

40

60

80

100

120

Rock

20

40

60

80

100

120

Calming/Soothing

20

40

60

80

100

120

Exciting/Thrilling

20

40

60

80

100

120

Piano

20

40

60

80

100

120

DrumMachine

20

40

60

80

100

120

Sleeping

20

40

60

80

100

120

Wakingup

20

40

60

80

100

120

Rapping

20

40

60

80

100

120

Screaming

20

40

60

80

100

120

Non-harmonic and
transient patterns

Figure 2: Top 20 most active feature bases (dictionary elements) for five different tags: Rock, Piano, Electronica, Sleeping
and Exciting/Thrilling. Note that all the features come from the same learned dictionary (mel-frequency spectrogram and
sparse RBM with 1024 hidden units and 0.01 sparsity), but different types of music use different feature bases.

3. EXPERIMENTS
3.1 Dataset

We evaluated our proposed feature representation on the
CAL500 dataset [19]. This dataset contains 502 western
songs, each of which was manually annotated with one or
more tags out of 174 possibilities, grouped in 6 categories:
Mood, Genre, Instrument, Song, Usage, and Vocal. In our
experiments, we considered only 97 tags with at least 30
example songs, to be able to compare with results reported
elsewhere [20], [4], [8] [5]. In order to apply the full path
of our pipeline, we obtained MP3 files of the 502 songs
and used the decoded waveforms.

3.2 Preprocessing Parameters

We first resampled the waveform data to 22.05kHz and ap-
plied the AGC using 10 sub-bands and attack/delay smooth-
ing the envelope on each band. We computed an FFT with
a 46ms Hann window and 50% overlap, which produces a
513 dimensional vector (up to half the sampling rate) for
each frame. We then converted it to a mel-frequency spec-
trogram with 128 bins. In the magnitude compression, C
was set to 10 (see section 2.1.3). For PCA whitening and
feature learning steps, we sampled 100000 data examples,
approximately 200 examples at random positions within
each song. Each example is selected as a 128× n (n=1, 2,
4, 6, 8 and 10) patch from the mel-frequency spectrogram.
Using PCA whitening, we reduced the dimensionality of
the examples to 49, 80, 141, 202, 263 and 323 for each n
by retaining 90% of the variance. Before the whitening,
we added 0.01 to the variance for regularization.

3.3 Feature Representation Parameters

We used dictionary size (or hidden layer size) and sparsity
(when applicable) as the primary feature-learning param-
eters. The dictionary size was varied over 128, 256, 512
and 1024. The sparsity parameter was set to ρ = 0.01, 0.02,
0.03, 0.05, 0.07 and 0.1 for sparse RBM and λ = 0.5, 1.0,
1.5 and 2.0 for sparse coding. Max-pooling was performed
over segments of length 0.1, 0.25, 0.5, 1, 2, 4, 8, 16, 32 and
64 seconds.

3.4 MFCC

We also evaluated MFCC as a “hand-crafted” feature in or-
der to compare it to our proposed feature representation.
Instead of using the MFCC provided from the CAL500
dataset, we computed our own MFCC to match parame-
ters as close as possible to the proposed feature. We used
the same AGC and FFT parameters but 40 bins for mel-
frequency spectrogram and then applied log and DCT. In
addition, we formed a 39-dimensional feature vector by
combining its delta and double delta and normalized it by
making the MFCC have zero mean and unit variance. The
MFCC was also fed into either the classifier directly or the
feature-learning step.

3.5 Classifier Parameters

We first subtracted the mean and divided by the standard
deviation of each song-level feature in the training set and
then trained the classifiers with the features and hard an-
notation using 5-fold cross-validation. In the neural net-
work, since the classifier is not our main concern, we sim-
ply fixed the hidden layer size to 512. After training, we
adjusted the distance from the decision boundary using the
diversity factor of 1.25, following the heuristic in [11].

4. EVALUATION AND DISCUSSION

4.1 Annotation and Retrieval Performance Metrics

The annotation task was evaluated using Precision, Recall
and F-score, following previous work. Precision and Re-
call were computed based on the methods described by
Turnbull [20]. The F-score was computed by first calcu-
lating individual F-scores for each tag and then averag-
ing the individual F-scores, similarly to what was done by
Ellis [8]. It should be noted that averaging individual F-
scores tends to generate lower average F-score than com-
puting the F-score from mean precision and recall values.
As for the retrieval, we used the area under the receiver
operating characteristic curve (AROC), mean average pre-
cision (MAP) and top-10 precision (P10) [8].

1 2 3 4 5 6 7 8 9 10
0.26

0.27

0.28

0.29

0.3

Number of Frames

F
−

S
c
o

re

1 2 3 4 5 6 7 8 9 10
0.71

0.72

0.73

0.74

0.75

A
R

O
C

AROC

F−Score

Figure 3: Effect of number of frames (Sparse RBM with
1024 hidden units)

0.1 0.25 0.5 1 2 4 8 16 32 64
0.26

0.265

0.27

0.275

0.28

0.285

0.29

0.295

Max−pooling [sec]

F
−

s
c
o

re

0.01

0.02

0.03

0.05

0.07

0.1

Sparsity

Figure 4: Effect of sparsity and max-pooling (Sparse
RBM with 1024 hidden units)

4.2 Visualization

Figure 2 shows most active top-20 feature bases learned on
the CAL500 for each tag. They are vividly distinguished
by different timbral patterns, such as harmonic/non-
harmonic, wide/narrow band, strong low/high-frequency
content and steady/transient ones. This indicates the fea-
ture learning algorithm effectively maps input data to high-
dimensional sparse feature vectors such that the feature
vectors (hidden units in RBM) are “selectively” activated
by given music.

4.3 Results and Discussion

We discuss the effect of parameters in the pipeline on the
annotation and retrieval performance.

4.3.1 Number of Frames

Figure 3 plots F-score and AROC for different number of
frames (patch size) taken from the mel-frequency spec-
trogram. It shows that the performance significantly in-
creases between 1 and 4 frames and then saturates beyond
4 frames. It is interesting that the best results are achieved
at 6 frames (about 0.16 second long). We think this is re-
lated to the representational power of the algorithm. That
is, when the number of frames is small, the algorithm is
capable of capturing the variation of input data. However,
as the number of frames grows, the algorithm becomes in-
capable of representing the exponentially increasing varia-
tion, in particular, temporal variation.

Annotation Retrieval

Data+Algorithm Prec. Recall F-score AROC MAP P10

With AGC

MFCC only 0.399 0.223 0.242 0.713 0.446 0.467

MFCC+K-means 0.446 0.240 0.270 0.732 0.471 0.492

MFCC+SC 0.437 0.232 0.260 0.713 0.452 0.476

MFCC+SRBM 0.441 0.235 0.263 0.725 0.463 0.485

Mel-Spec+K-means 0.467 0.252 0.287 0.740 0.488 0.520

Mel-Spec+SC 0.468 0.252 0.286 0.734 0.482 0.507

Mel-Spec+SRBM 0.479 0.257 0.289 0.741 0.489 0.513

Without AGC

MFCC only 0.399 0.222 0.239 0.712 0.444 0.460

MFCC+K-means 0.438 0.237 0.267 0.727 0.465 0.489

Mel-Spec+SRBM 0.449 0.244 0.274 0.727 0.477 0.503

Table 1: Comparison of the performance for different in-
put data and feature learning algorithms. These results are
all based on a linear SVM.

4.3.2 Sparsity and max-pooling size

Figure 4 plots F-score for a set of sparsity values and max-
pooling sizes. It shows a clear trend that higher accuracy is
achieved when the feature vectors are sparse (around 0.02)
and max-pooled over segments of about 16 seconds. 1

These results indicate that the best discriminative power
in song-level classification is achieved by capturing only
a few important features over both timbral and temporal
domains.

4.3.3 Input Data, Algorithms and AGC

Table 1 compares the best results on features learned on
different types of input data and feature learning algorithms.
As shown, the mel-frequency spectrogram significantly out-
performs MFCC regardless of the algorithms. Among the
feature learning algorithms, K-means and sparse RBM gen-
erally perform better than SC. In addition, the results show
that the AGC significantly improves both annotation and
retrieval performance, regardless of the input features.

4.3.4 Comparison to state-of-the-art algorithms

Table 2 compares our best results to those of state-of-the-
art algorithms. They all use MFCC features as input data
and represent them either using a Gaussian Mixture Model
(GMM), as a bag of frames [20], or Dynamic Texture Mix-
ture (DTM) [4]. They have progressively improved their
performance by building on the previous systems, such
as, in Bag of Systems (BoS) [8] or Decision Fusion (DF)
decision-fusion. However, our best system trained with a
linear SVM shows comparable results. In addition, with
nonlinear neural-network classification, our system outper-
forms the prior algorithms in F-score and all retrieval met-
rics.

1 We found that the average length of songs on the CAL500 dataset
is approximately 250 seconds, which suggests that aggregating about 16
(≈ 250/16) max-pooled feature vectors over an entire song is an optimal
choice.

Annotation Retrieval

Methods Prec. Recall F-score AROC MAP P10

HEM-GMM [20] 0.374 0.205 0.213 0.686 0.417 0.425

HEM-DTM [4] 0.446 0.217 0.264 0.708 0.446 0.460

BoS-DTM-GMM-LR [8] 0.434 0.272 0.281 0.748 0.493 0.508

DF-GMM-DTM [5] 0.484 0.230 0.291 0.730 0.470 0.487

DF-GMM-BST-DTM [5] 0.456 0.217 0.270 0.731 0.475 0.496

Proposed methods

Mel-Spec+SRBM+SVM 0.479 0.257 0.289 0.741 0.489 0.513

Mel-Spec+SRBM+NN 0.473 0.258 0.292 0.754 0.503 0.527

Table 2: Performance comparison: state-of-the-art (top)
and proposed methods (bottom).

5. CONCLUSION AND FUTURE WORK
We have presented a sparse feature representation method
based on unsupervised feature-learning. This method was
able to effectively capture many timbral patterns of mu-
sic from minimally pre-processed data. Using a simple
linear classifier, our method achieved results comparable
to state-of-the-art algorithms for music annotation and re-
trieval tasks on the CAL500 dataset. Furthermore, our sys-
tem outperformed them with a non-linear classifier.

To ensure the discriminative power of our proposed fea-
ture representation method, we need to evaluate it on larger
datasets, such as, the Million Song Dataset [1] or Magnata-
gatune [12] and also for different classification tasks.

6. REFERENCES

[1] T. Bertin-Mahieux, D. Ellis, B. Whitman, and
P. Lamere. The million song dataset. In ISMIR, 2011.

[2] A. Coates, H. Lee, and A. Ng. An analysis of
single-layer networks in unsupervised feature
learning. Journal of Machine Learning Research,
2011.

[3] A. Coates and A. Ng. The importance of encoding
versus training with sparse coding and vector
quantization. In ICML, 2011.

[4] E. Coviello, A. Chan, and G. Lanckriet. Time series
models for semantic music annotation. IEEE
Transactions on Audio, Speech, and Language
Processing, 2011.

[5] E. Coviello, R. Miotto, and G. Lanckriet. Combining
content-based auto-taggers with decision-fusion. In
ISMIR, 2011.

[6] S. Dieleman, P. Brakel, and B. Schrauwen.
Audio-based music classification with a pretrained
convolutional network. In ISMIR, 2011.

[7] D. Ellis. Time-frequency automatic gain control. web
resource, available, http://labrosa.ee.
columbia.edu/matlab/tf_agc/, 2010.

[8] K. Ellis, E. Coviello, and G. Lanckriet. Semantic
annotation and retrieval of music using a bag of
systems representation. In ISMIR, 2011.

[9] P. Hamel, S. Lemieux, Y. Bengio, and D. Eck.
Temporal pooling and multiscale learning for
automatic annotation and ranking of music audio. In
ISMIR, 2011.

[10] H. Henaff, K. Jarrett, K. Kavukcuoglu, and Y. LeCun.
Unsupervised learning of sparse features for scalable
audio classification. In ISMIR, 2011.

[11] M. Hoffman, D. Blei, and P. Cook. Easy as CBA: A
simple probabilistic model for tagging music. In
ISMIR, 2009.

[12] E. Law and L. Ahn. Input-agreement: a new
mechanism for collecting data using human
computation games. In Proc. Intl. Conf. on Human
factors in computing systems, CHI. ACM, 2009.

[13] H. Lee, C. Ekanadham, and A. Ng. Sparse deep belief
net model for visual area v2. Advances in Neural
Information Processing Systems, 2007.

[14] H. Lee, P. Pham Y. Largman, and A.Y. Ng.
Unsupervised feature learning for audio classification
using convolutional deep belief networks. Advances in
Neural Information Processing Systems, 2009.

[15] M. Müller, D. Ellis, A. Klapuri, and G. Richard.
Signal processing for music analysis. IEEE Journal on
Selected Topics in Signal Processing, 2011.

[16] J. Nam, J. Ngiam, H. Lee, and M. Slaney. A
classification-based polyphonic piano transcription
approach using learned feature representation. In
ISMIR, 2011.

[17] J. Schlter and C. Osendorfer. Music Similarity
Estimation with the Mean-Covariance Restricted
Boltzmann Machine. In ICMLA, 2011.

[18] P. Smolensky. Information processing in dynamical
systems:Foundation of harmony theory. MIT Press,
Cambridge, 1986.

[19] D. Turnbull, L. Barrington, D. Torres, and
G. Lanckriet. Towards musical query-by-semantic
description using the CAL500 data set. In ACM
Special Interest Group on Information Retrieval
Conference, 2007.

[20] D. Turnbull, L. Barrington, D. Torres, and
G. Lanckriet. Semantic annotation and retrieval of
music and sound effects. IEEE Transactions on Audio,
Speech, and Language Processing, 2008.

