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Digital subtractive synthesis is a popular music synthesis method, which requires oscillators that

are aliasing-free in a perceptual sense. It is a research challenge to find computationally efficient

waveform generation algorithms that produce similar-sounding signals to analog music synthesizers

but which are free from audible aliasing. A technique for approximately bandlimited waveform

generation is considered that is based on a polynomial correction function, which is defined as the

difference of a non-bandlimited step function and a polynomial approximation of the ideal bandlim-

ited step function. It is shown that the ideal bandlimited step function is equivalent to the sine inte-

gral, and that integrated polynomial interpolation methods can successfully approximate it.

Integrated Lagrange interpolation and B-spline basis functions are considered for polynomial

approximation. The polynomial correction function can be added onto samples around each discon-

tinuity in a non-bandlimited waveform to suppress aliasing. Comparison against previously known

methods shows that the proposed technique yields the best tradeoff between computational cost and

sound quality. The superior method amongst those considered in this study is the integrated third-

order B-spline correction function, which offers perceptually aliasing-free sawtooth emulation up

to the fundamental frequency of 7.8 kHz at the sample rate of 44.1 kHz.
VC 2012 Acoustical Society of America. [DOI: 10.1121/1.3651227]
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I. INTRODUCTION

Digital subtractive synthesis refers to the emulation of

analog music synthesis using a computer and it is one of the

popular synthesis methods nowadays. The sound-generation

principle in subtractive synthesis is first to synthesize a signal

with rich spectral content and then to filter that signal with a

time-varying filter. There is a tradition1,2 to use geometric per-

iodic signals, such as the sawtooth, the rectangular, or the tri-

angle waveform, as the source. Annoyingly, digital synthesis

of these classical waveforms via trivial sampling suffers from

aliasing distortion that can be heard as a disturbing hiss, hum,

or beating.3–6 This is due to the discontinuities in the wave-

forms, or their derivatives, which require a nearly infinite

bandwidth in the frequency domain. The challenge, and the

topic of this paper, is to devise an efficient digital signal gen-

eration algorithm, which is free from audible aliasing and pro-

duces similar-sounding signals to analog music synthesizers.

In principle, the aliasing in the audio band can be

reduced by increasing the sample rate.6,7 However, since the

spectra of periodic waveforms decay gently, for example, at

only about 6 dB per octave in the case of the sawtooth signal,

a very high oversampling ratio is required for proper aliasing

suppression. More advanced approaches that have been sug-

gested are briefly reviewed next.

The earliest approaches in the 1970s reduced a sum of

harmonically related sinusoids into a fraction of two trigono-

metric functions using the properties of the sine and cosine

functions.8,9 These methods correspond to a condensed

implementation of additive synthesis.10 Another perspective

on the additive synthesis of the classical waveforms is speci-

fying their spectral content in the frequency domain and then

applying the inverse (fast) Fourier transform to the synthe-

sized spectrum.11 A common approach to producing a fixed

number of harmonically related sinusoids is to utilize wavet-

able synthesis,5,7 where a precomputed table containing one

cycle of an oscillation is played back. By reading the look-

up table at a different rate, the fundamental frequency of the

waveform is changed from its nominal value.12

Alternatively, the waveforms can be synthesized from a

sinusoid by means of distortion synthesis13–15 in which the

higher harmonics are generated by applying a nonlinear wave-

shaper16,17 or phase distortion18,19 to the sinusoid having the

desired fundamental frequency. The phase distortion approach

using a time-varying first-order allpass filter14,19,20 has been

extended to a chain of time-varying allpass filters.21 Other non-

linear approaches to the approximation of these classical wave-

forms include the use of a nonlinear waveshaper in the

feedback path of a feedback amplitude modulation synthe-

sizer22 and bitwise logical modulation of two sinusoidal oscil-

lators.23 However, although one can obtain nearly bandlimited

waveforms with these nonlinear approaches, it should be noted

that they are generally not bandlimited.
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The bandlimited waveforms can be approximated with

the help of a signal that has a spectrum containing the harmon-

ics of the target waveform but with a steeper spectral tilt. A

digital filter can then be used to modify the overall spectral

shape to obtain close approximations of the classical wave-

forms. One such approach produces the sawtooth wave by

full-wave rectifying a sine wave of half of the target funda-

mental frequency and by applying a tracking highpass filter

and a fixed lowpass filter to the rectified sinusoid.24 A related

recent approach generates the sawtooth waveform by differen-

tiating a piecewise parabolic waveform, i.e., a squared saw-

tooth wave signal.25–27 The other classical waveforms are

obtained with modifications to the basic algorithm.27 It is pos-

sible to obtain the rectangular pulse and the skewed triangle

waveshapes by FIR comb filtering6,28 the sawtooth wave and

piecewise parabolic signals, respectively. This differentiated

second-order polynomial wave-form approach has recently

been extended to higher-order differentiations of higher-order

polynomials.29 The aliasing has been shown to be reduced also

by highpass and comb filtering the alias-corrupted signals.30

Stilson and Smith suggested in 1996 an approach that is

based on bandlimiting the derivative of the waveform.31 By

bandlimiting the waveform derivative, i.e., by replacing each

lone impulse, the derivative of a waveform discontinuity, with

the impulse response of a lowpass filter, and by applying inte-

gration to the resulting bandlimited impulse train (BLIT), an

approximately bandlimited waveform is obtained.31,32 Here

the integration and differentiation only vary the spectral tilt of

the waveform by increasing and decreasing it, respectively,

by about 6 dB per octave, as can be proven by analyzing the

Laplace transforms of the derivative and the integral of a sig-

nal. Approximations of the bandlimited impulses used in the

BLIT approach have been proposed, including modified fre-

quency modulation,33 feedback delay loops,34,35 the impulse

responses of low-order fractional delay filters,35,36 parametric

window functions,37 and optimized look-up table designs.37

However, the integration in the BLIT approach may

cause numerical problems when it is implemented with finite

accuracy.32,36 In order to avoid this issue, Brandt proposed the

use of a second-order leaky integrator that has zero DC

gain.38 Furthermore, he suggested that the numerical problems

could be overcome by performing the integration beforehand

by using an accumulated impulse response of the lowpass fil-

ter. When every step-like discontinuity of the waveform is

replaced with the accumulated impulse response, that Brandt

calls a bandlimited step function (BLEP), an approximately

bandlimited waveform is obtained.38

Both the BLIT and the BLEP methods are usually

implemented by sampling the impulse response of a

continuous-time lowpass filter39 that is further accumulated

in the BLEP approach. The latter approach leads to an

approximation of the ideal bandlimited unit step function. In

this paper, the ideal bandlimited unit step function is derived

in closed form.

The BLIT and the BLEP methods require a table in

which the sampled impulse response or the sampled accumu-

lated impulse response is stored.31–33,38–40 In practice, the

impulse response of the lowpass filter must be oversampled

in order to achieve improved accuracy in the positioning of

the waveform transition between the sampling points. This

raises another issue since large tables cannot be used in

memory sensitive platforms. In order to achieve good accu-

racy, the oversampling factor should be large, for example,

32, which makes the table size even larger. This paper pro-

poses a polynomial approximation of the ideal bandlimited

unit step function based on integrated Lagrange or B-spline

interpolation. These methods lead to a computationally effi-

cient implementation of the BLEP method that does not

require a table or oversampling.

At high fundamental frequencies, when K samples

around each discontinuity are corrected using the table-based

BLEP method, two or more tables may overlap, since the dis-

tance between contiguous discontinuities can be less than K
samples. The same problem occurs also with the table-based

BLIT method. Taking care of overlapping tables increases the

computational cost per output sample. If the overlapping is

undesirable and must be avoided, the highest possible funda-

mental frequency for a synthetic sawtooth signal using the

table-based BLEP and BLIT approaches is then fs/K, where fs
is the sample rate.13 The methods proposed in this paper use

low-order polynomials, which correspond to shorter correc-

tions functions (i.e., a smaller K) than when a table is used.

Section II of this paper shows that the ideal BLEP func-

tion is equivalent to the well-known sine integral. The use of

the BLEP residual function in the synthesis of the classical

waveforms is explained and illustrated. The polynomial

approximation of the ideal BLEP function using integrated

Lagrange and B-spline interpolation is discussed in Sec. III.

The proposed polynomial waveform correction approaches

are evaluated in Sec. IV where the audibility of the produced

aliasing is investigated using a model of auditory masking

and a standard perceptual sound quality measure. In addi-

tion, the computational load of the proposed approaches is

discussed. A comparison with alternative waveform synthe-

sis methods is presented. Section V concludes the paper.

II. BANDLIMITED STEP FUNCTIONS

The continuous-time classical waveforms can be con-

structed by integrating the sum of an impulse train and a

constant.31,32,34,36 This is equivalent to summing a sequence

of unit step functions and a linear function.38 These

approaches lead to the previously proposed BLIT and BLEP

synthesis methods, respectively, when bandlimited versions

of the basis functions are used. Using the summing of unit

step functions, the rectangular pulse wave with a fundamen-

tal frequency f0¼ 1/T0 and a duty cycle, or the pulse width,

P can be expressed as

rðt;PÞ ¼ 2
X1

k¼�1
½uðt� kT0Þ� uðt�ðkþPÞT0Þ�� 1; (1)

where u(x) is the Heaviside unit step function given by

uðxÞ ¼
ðx

�1
dðsÞ ds ¼

ðx

0�
dðsÞ ds ¼

0; when x < 0;

0:5;when x ¼ 0;

1; when x > 0

8><
>:

(2)
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and d(t) is the Dirac delta (impulse) function. The sawtooth

wave can be expressed as

sðtÞ ¼ 1þ 2t

T0

� 2
X1

k¼�1
uðt� kT0Þ (3)

and the triangle wave as

sðtÞ ¼ 4

T0

ðt

�1
rðs; 0:5Þ ds ¼ 8

T0

X1
k¼�1

ððt� kT0Þuðt� kT0Þ

� ðt� ðkþ 0:5ÞT0Þuðt� ðkþ 0:5ÞT0ÞÞ � 1: (4)

In the ideal BLIT method, the synthesis algorithm first

smooths the impulse train with an ideal lowpass filter, i.e., a

filter that passes the frequencies below a cut-off frequency

as is and blocks the frequencies above it.31,32 Every unit

impulse is replaced with the impulse response of the ideal

lowpass filter given by

hidðtÞ ¼ afs sincðafstÞ; (5)

where fs is the sample rate, 0� a� 1 is a scaling factor for

the filter cut-off frequency, and sinc(x)¼ sin(px)/(px).

In the BLEP method, each step-like discontinuity in the

signal is replaced with a bandlimited unit step function,

which is the integral of the bandlimited impulse, i.e., the

impulse response of the ideal lowpass filter. Previously accu-

mulating a windowed impulse response has approximated

the integration since the sinc function itself is infinitely long.

However, the ideal bandlimited unit step function can be

expressed in closed form as

hIidðtÞ ¼
ðt

�1
hidðsÞds ¼ afs

ðt

�1

sinðpafssÞ
pafss

ds

¼ 1

p

ðpafst

�1

sinðsÞ
s

ds ¼ 1

p

ð1
�pafst

sinðsÞ
s

ds (6)

from which by substituting

siðxÞ ¼ �
ð1

x

sinðtÞ
t

dt ¼ SiðxÞ � p
2
; (7)

SiðxÞ ¼
ðx

0

sinðtÞ
t

dt ¼
X1
n¼0

ð�1Þnx2nþ1

ð2nþ 1Þð2nþ 1Þ! ; (8)

Sið�xÞ ¼ �SiðxÞ; (9)

where Si(x) is the well-known sine integral,41 yields

hIidðtÞ ¼ �
1

p
sið�pafstÞ ¼ �

1

p
Sið�pafstÞ �

p
2

� �
¼ 1

2
þ 1

p
SiðpafstÞ: (10)

Now, since the sawtooth and the rectangular pulse wave can

be synthesized by summing time-shifted unit step functions,

the respective bandlimited waveforms can be constructed by

replacing every unit step function with the bandlimited unit

step hIid(t) function derived above.

The forming of the correction function used in the

BLEP approach for the sawtooth and the rectangular pulse

wave is illustrated in Fig. 1, where the impulse response of

the ideal lowpass filter, the ideal bandlimited unit step func-

tion, and the BLEP residual are shown for the cut-off fre-

quency-scaling factor a¼ 1. The correction function, called

the BLEP residual, is the difference between the bandlimited

unit step function hIid(t) and the unit step function u(t). Sam-

ples taken from the BLEP residual [see Fig. 1(c)] can be

summed onto each discontinuity of a trivially sampled sig-

nal, resulting in a computationally efficient implementation

of the synthesis algorithm.

In case of the triangle wave, however, the replacement

of each unit step function with a bandlimited step function is

inadequate. Here, the ramp functions of Eq. (4), i.e., terms of

form su(s) need to be replaced with the integral of the band-

limited step function, given by

ð
hIidðtÞdt ¼ thIidðtÞ þ

cosðpafstÞ
p2afs

: (11)

Figure 2 illustrates how a trivially sampled rectangular

pulse signal can be post-processed using the BLEP method.

Figure 2(b) shows the correction functions associated with

each discontinuity in the trivial pulse signal of Fig. 2(a). In

this example, the BLEP residual modifies only six samples,

three before and three after the transition. The truncated cor-

rection functions in Fig. 2(b) have been shifted by the frac-

tional delay of each discontinuity, i.e., the delay between the

discontinuity and the sample following it, and have then

been sampled at the six regular sampling grid points from

the ideal BLEP residual. Note that this method requires

detection of the accurate location of each discontinuity in the

original signal between the sampling instants.

Additionally, the magnitude and direction (up or down)

of each discontinuity must be estimated because the polarity

and amplitude of the correction function depend on them. In

this example all discontinuities have the same magnitude

FIG. 1. When the continuous-time sinc pulse in (a) is integrated, the ideal

bandlimited step function, the sine integral, shown in (b) (solid line) is

obtained. The unit step function is also shown in (b) (dashed line). The

BLEP residual, the difference between the bandlimited step function and the

unit step function, is plotted in (c). T is the sampling interval used, i.e.,

T¼ 1/fs.
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(2.0), but their polarity varies. For this reason, every second

correction function in Fig. 2(b) has been inverted. Figure

2(c) shows the sum of the original signal and the correction

function samples. This process results in an approximately

bandlimited version of the original signal.

The corresponding fractional delay of each discontinuity

can be computed using the principle of similar right trian-

gles, as depicted in Fig. 3. Since a unipolar modulo counter

can be used to compute the instantaneous phase of the wave-

form, the fractional delay can be directly computed from the

value of the modulo counter after the discontinuity. For sim-

plicity, assume that the values of the modulo counter are lim-

ited to be between 0 and 1, since any modulo counter can be

normalized to satisfy this assumption. Now, for the wave-

form phase reset, see Fig. 3(a), the relation

pðnÞ
Td
¼ f0T

T
; (12)

where p(n) is the modulo counter value after the discontinu-

ity, d corresponds to the fractional delay, T is the sampling

interval, and f0T is the step size of the counter, is obtained

from Fig. 3(c). Thus, the fractional delay can be solved as

d ¼ pðnÞ
f0T

: (13)

In the case of a rectangular pulse wave, the fractional

delay associated with the downward discontinuity is com-

puted from the value of the modulo counter after it exceeds

P, the duty cycle [see Fig. 3(b)]. However, in this case P
needs to be subtracted from the modulo counter value, as

shown in Fig. 3(d), in order to obtain the correct fractional

delay value. When generating a triangle wave, the fractional

delays of the turning points are obtained similarly with

P¼ 0.5.

III. CORRECTION BASED ON POLYNOMIAL
INTERPOLATION

Next, a polynomial approximation of the ideal BLEP

method, originally proposed by Välimäki and Huovilainen,39

is discussed. Previously, the basis function of linear interpola-

tion, i.e., a continuous-time triangle pulse, was integrated with

respect to time in order to obtain a closed-form, second-order

polynomial approximation of the bandlimited step function.39

In addition, the integrals of a third-order spline and a trun-

cated third-order Lagrange interpolator that modifies only the

two samples that precede and follow a discontinuity have

been previously used as the approximately bandlimited step

function.13 This section extends this idea to general Nth-order

interpolation polynomials, yielding an (Nþ 1)th-order polyno-

mial bandlimited step function called PolyBLEP. The order of

the PolyBLEP function is denoted by NI.

A. Integrated Lagrange interpolation

Lagrange interpolation is commonly used to interpolate

bandlimited signals, such as in sampling-rate conversions or

in fractional-delay filtering.42–46 The Nth-order Lagrange

interpolation coefficients can be expressed in closed form as

hLðnÞ ¼
YN
k¼0
k 6¼n

D� k

n� k
¼
YN
k¼0
k 6¼n

1

n� k
�
YN
k¼0
k 6¼n

ðD� kÞ

¼ CðnÞ
YN
k¼0
k 6¼n

ðD� kÞ (14)

for n¼ 0,1,2,…,N, where D is a real number that corresponds

to the delay from the beginning (n¼ 0) of the impulse

response and C(n) are constant scaling coefficients.45,47 An

FIR filter with the above coefficients hL(n) shifts the input sig-

nal by approximately D sampling intervals.

It has been shown previously that the Lagrange interpola-

tion is a maximally flat approximation of sinc interpolation

around the zero frequency.47 Knowing this, integrated

Lagrange interpolation, which is an approximation of the sine

FIG. 3. Principle for computing the fractional delay d for the localization of

the BLEP residual (a) at the start of a new fundamental period and (b) at the

downward shift of the rectangular pulse wave with duty cycle P. The step

size f0T and the sampling interval T form the sides of a right triangle which

is similar to the right triangles from which fractional delay d can be solved

for (c) a sawtooth wave or (d) a rectangular pulse wave.

FIG. 2. (a) Continuous-time (solid line) and trivially sampled (dots) rectangular

signal, (b) truncated BLEP residual functions of length 6T (solid line) centered

at each discontinuity and inverted for downward steps, and (c) an approxi-

mately bandlimited signal that is obtained by adding sampled signals (a) and

(b). The fractional delay associated with each discontinuity is given in (b).
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integral (i.e., the integrated sinc function), is defined. The in-

tegral of the Lagrange interpolation formula with respect to D
can be written as

hILðnÞ ¼
ð

hLðnÞ dDþ ELðnÞ; (15)

where hL(n) is the Lagrange interpolation coefficient given

by Eq. (14) and EL(n) is a constant with which the integrated

Lagrange interpolation polynomials are set to be continuous.

These constants are selected so that the polynomial begins

from the zero level and the polynomials for the successive

coefficients are continuous at their boundaries. For a chosen

polynomial of order N, the coefficient hIL(n) can be com-

puted as described above. The computed polynomial is eval-

uated for delay D and an approximation of the ideal BLEP

function is obtained. To obtain an approximation of the ideal

BLEP residual, a unit step function u(n) must be subtracted

from Eq. (15).

Tables I, II, and III show the formulae for three low-

order Lagrange polynomials. The interpolation polynomials

were obtained by evaluating Eq. (14) for orders 1, 2, and 3,

respectively. The integrated polynomials were obtained by

integrating the interpolation polynomials with respect to D
and by setting the polynomials to be continuous, as described

above. Integration increases the orders of these polynomials

by one. Lastly, the polynomial correction functions associ-

ated with integrated first-, second- and third-order Lagrange

interpolation polynomials are also presented in Tables I, II,

and III, respectively. A unit step function centered at the dis-

continuity was subtracted from the integrated interpolation

polynomial, and a variable change was implemented so that

each polynomial segment can be computed using the frac-

tional delay d, i.e., the fractional part of the delay D.

For odd-order interpolation polynomials, the variable

change is obtained with d¼D – (N – 1)/2. When the order of

the interpolation polynomial is even, the substitution is more

complicated. Now, since the polynomial is applied asymmet-

rically with respect to the discontinuity depending on its

position, two cases are obtained: the discontinuity is either

located closer to the sampling instant before or after it. In

the first case, the correction function is applied to N/2þ 1

samples before and N/2 samples after the discontinuity,

whereas in the latter case the numbers of samples to be

modified before and after the discontinuity are interchanged.

When the discontinuity is closer to the sampling instant

before it, the fractional delay should lie in the

range 0.5� d< 1 (cf. Fig. 3). This can be obtained by substi-

tuting d¼D – N/2� 1. In the other case, the fractional

delay is in the range 0� d< 0.5, which yields a substitution

d¼D – N/2. This also means that the correction functions

are different for these two cases, as can be seen in Table II.

The continuous-time impulse response, the integrated

impulse response, and the PolyBLEP residual of first-, sec-

ond-, and third-order Lagrange interpolators are depicted in

Fig. 4. As can be seen from Figs. 4(a), 4(d), and 4(g), the

impulse responses of the interpolation polynomials give a

closer approximation of the sinc function as the interpolation

order increases. Similarly, as the interpolation order

increases, the PolyBLEP residual functions, shown in Figs.

4(c), 4(f), and 4(i), resemble more the ideal BLEP residual

function [cf. Fig. 1(c)].

Figure 5 shows the waveforms and spectra of bandlim-

ited sawtooth signal approximations using the proposed

TABLE I. First-order (N¼ 1) Lagrange polynomials, their integrated forms,

and the corresponding BLEP residual polynomials, which correspond to the

shifted integrated Lagrange polynomials from which a unit step function has

been subtracted. Span refers to the time interval on which each polynomial

is applied. Time 0 refers to the mid-point of the correction function and T is

the sampling interval.

Span

Lagrange polynomial

(0�D< 1)

Integrated Lagrange

polynomial (0�D< 1)

BLEP residual

(0� d< 1)

�T…0 D D2/2 d2/2

0…T �Dþ 1 –D2/2þDþ 1/2 �d2/2þ d� 1/2

TABLE II. Second-order (N¼ 2) Lagrange polynomials, their integrated

forms, and the corresponding BLEP residuals.

Span Lagrange polynomial (0.5�D< 1.5)

�1.5T…�0.5T D2/2�D/2

�0.5T…0.5T �D2þ 2D

0.5T…1.5T D2/2� 3D/2þ 1

Span Integrated Lagrange polynomial (0.5�D< 1.5)

�1.5T…�0.5T D3/6�D2/4þ 1/24

�0.5T…0.5T �D3/3þD2� 1/6

0.5T…1.5T D3/6� 3 D2/4þDþ 5/8

Span BLEP residual (0� d< 1)

�1.5T…�T d3/6� d2/4þ 1/24, when 0.5� d< 1

�T…�0.5T d3/6þ d2/4� 1/24, when 0� d< 0.5

�0.5T…0 �d3/3þ d2� 1/6, when 0.5� d< 1

0…0.5T �d3/3þ d� 1/2, when 0� d< 0.5

0.5T…T d3/6� 3 d 2/4þ d� 3/8, when 0.5� d< 1

T…1.5T d3/6� d2/4þ 1/24, when 0� d< 0.5

TABLE III. Third-order (N¼ 3) Lagrange polynomials, their integrated

forms, and the corresponding BLEP residual polynomials.

Span Lagrange polynomial (1�D< 2)

�2T…�T D3/6�D 2/2þD/3

�T…0 �D3/2þ 2 D2� 3 D/2

0…T D3/2� 5D2/2þ 3D

T…2T �D3/6þD2� 11D/6þ 1

Span Integrated Lagrange polynomial (1�D< 2)

�2T…�T D4/24 � D3/6þD2/6� 1/24

�T…0 �D4/8þ 2D3/3� 3D2/4þ 1/6

0…T D4/8þ 5D3/6þ 3D2/2� 7/24

T…2T �D4/24þD3/3� 11D2/12þDþ 2/3

Span BLEP residual (0� d< 1)

�2T…�T d4/24� d2/12

�T…0 �d4/8þ d3/6þ d2/2� 1/24

0…T d4/8� d3/3� d2/4þ d� 1/2

T…2T �d4/24þ d3/6� d2/6þ 1/24
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method. The waveforms have been obtained by modifying

the trivial sawtooth waveform, i.e., the output signal of a

bipolar modulo counter. The modification involves the addi-

tion of samples from the PolyBLEP residual function. It is

seen that differences between waveforms in Figs. 5(a), 5(c),

and 5(e) are small. However, the aliasing in the magnitude

spectrum becomes more attenuated as the interpolation order

is increased, as seen in Figs. 5(b), 5(d), and 5(f).

The crosses in Fig. 5 show the harmonic levels for the

ideal sawtooth signal. It is seen that the desired harmonic

components at high frequencies are slightly reduced. If the

amplitudes of the higher harmonics are to be restored to the

desired level, a post-processing equalizing filter can be

used.37 In practice, a low-order filter, which is independent

of the fundamental frequency, will suffice to restore the har-

monics to be very close to the desired levels. Table IV shows

the optimized parameters of a second-order linear-phase FIR

filter expressed as

HeqðzÞ ¼ b0 þ b1z�1 þ b0z�2; (16)

where b0 and b1 are the filter coefficients, for the Lagrange

polyBLEP algorithms of orders 2, 3, and 4. This filter

corrects the amplitudes of all harmonic components below

15 kHz to be within 1.0 dB of their desired levels.

The spectral envelope of the Lagrange PolyBLEP resid-

ual can be expressed in closed form by exploiting the fre-

quency response of the Nth-order Lagrange interpolation

recently derived by Franck and Brandenburg.48 Since the fre-

quency response of an integrated signal is the frequency

response of the underlying signal divided by the (angular) fre-

quency (cf. discussion on the BLIT method in Sec. I), the

spectral envelope of the Lagrange PolyBLEP is the spectral

envelope of the respective interpolation polynomial divided

by the frequency. Further, the spectral envelope of the

Lagrange PolyBLEP residual is obtained by subtracting

the frequency response of the unit step, 1/(jx), where x is the

angular frequency, from the frequency response of the

Lagrange PolyBLEP. The spectral envelopes for the second-,

third-, and fourth-order Lagrange PolyBLEP functions are

listed in Table V. The baseband and the first generation of

aliased components of these responses are plotted in Figs.

5(b), 5(d), and 5(f), where the dashed line illustrates the spec-

tral envelopes of the signal and the first generation of aliasing.

It can be seen in Fig. 5 that increasing the PolyBLEP

order from an even order to the next odd order does not

improve the alias reduction performance much, especially at

low frequencies where the aliasing is more easily perceiva-

ble. Furthermore, as the computation of the correction func-

tion depends on the range of the fractional delay in all odd-

order Lagrange PolyBLEPs, the small improvement in alias

FIG. 4. Continuous-time impulse responses of the (a) first-order, (d)

second-order, and (g) third-order Lagrange interpolation, their correspond-

ing integrated impulse responses (solid line) together with the unit step func-

tion (dashed line) in (b), (e), and (h), and their differences, i.e., polynomial

approximations of the BLEP residual function, in (c), (f), and (i),

respectively.

FIG. 5. Sawtooth waveforms produced by the (a) second-order, (c) third-

order, and (e) fourth-order Lagrange PolyBLEP approaches and their respec-

tive magnitude spectra (b), (d), and (f). The crosses indicate the nominal lev-

els of harmonics of the sawtooth wave. The dashed lines show the spectral

envelope of the synthetic harmonics and the first generation of aliased spec-

tral components in each case.

TABLE IV. Coefficients b0 and b1 of the second-order post-processing

equalizing FIR filter [see Eq. (16)] for the proposed algorithms.

Approach PolyBLEP order b0 b1

Lagrange NI¼ 2 �0.1469 1.2674

NI¼ 3 �0.0435 1.0682

NI¼ 4 �0.0721 1.1130

B-spline NI¼ 3 �0.2424 1.4345

NI¼ 4 �0.3564 1.6292

TABLE V. Spectral envelopes of second-, third-, and fourth-order Lagrange

PolyBLEP functions.

PolyBLEP order Spectral envelope

NI¼ 2 sinc2(x/2p)/x
NI¼ 3 (1þx2/8) sinc3(x/2p)/x
NI¼ 4 (1þx2/6) sinc4(x/2p)/x
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reduction is obtained with a larger increase in the computa-

tional complexity of the algorithm. More generally, the odd-

order Lagrange PolyBLEPs are computationally at least as

complex as the next even-order Lagrange PolyBLEP due to

the additional control logic that is required to select the poly-

nomials to be evaluated. Therefore, the use of even-order

Lagrange PolyBLEPs is highly recommended, i.e., an odd-

order interpolation polynomial is used as the starting point

of the algorithm.

In Fig. 6, a signal-processing structure that implements

the integrated first-order Lagrange interpolator is illustrated.

This algorithm has minimal memory allocation, as look-up

tables are not needed. The structure is optimized so that the

number of required operations is as low as possible by com-

bining common terms of both coefficients. This configura-

tion utilizes multiplications by 1/2, which can be efficiently

implemented on a signal processor. Additionally, one of the

polynomials to be evaluated is sparse in the sense that the

coefficients of some terms are zero, see also Table I. Thus,

the evaluation of these two second-order polynomials

requires less computing than the evaluation of two second-

order polynomials in general. Similarly, the BLEP residual

polynomials in the third- and fourth-order cases are sparse,

see Tables II and III.

The discontinuity detector in Fig. 6 looks for major differ-

ences between two neighboring samples in the input signal

provided by the trivial signal generator. Every time a disconti-

nuity is found, its fractional delay d and height (i.e., level) A
are determined, and the detector then initiates (i.e., triggers)

the correction function generation by feeding a unit impulse

multiplied by A into the structure. The structure then computes

the required two polynomial correction function samples and

adds them onto the input signal samples, as shown in Fig. 6.

The location of the discontinuity is accurately accounted for

by the fractional delay value d, and the oversampling needed

in table-based BLEP approaches is thus avoided.

B. Integrated B-spline interpolation

B-splines are another family of polynomial functions for

interpolating discrete signals and are often used in image

processing.49 The B-spline polynomials bN(x) of order N are

constructed from (Nþ 1)-fold convolutions of a rectangular

pulse b0(x), i.e.,

b0 xð Þ ¼ 1; xj j � 0:5;
0; otherwise;

�
(17)

bNðxÞ ¼ b0ðxÞ�bN�1ðxÞ; for N ¼ 1; 2; :::: (18)

As a result, bN(x) is expressed as a piece-wise polynomial

similarly to the Lagrange interpolation polynomials. It

should be noted that the first-order B-spline polynomial is

identical to the first-order Lagrange interpolation polyno-

mial, which is commonly known as linear interpolation.

An FIR filter that shifts the input signal by approxi-

mately D sampling intervals using the B-spline interpolation

can be expressed as hB(n)¼ bN(D–n). As with the Lagrange

interpolation, the integral of the B-spline interpolation for-

mula with respect to D is written as

hIBðnÞ ¼
ð

hBðnÞdDþ EBðnÞ; (19)

where EB(n) is a constant with which the successive inte-

grated B-spline interpolation coefficients are set to be

continuous at their boundaries. The B-spline PolyBLEP re-

sidual function can be obtained by subtracting a unit step

function from Eq. (19). Tables VI and VII show the coeffi-

cients of B-spline polynomials hB(n), their integrated forms,

and the polynomial correction functions with respect to D
and d for orders 2 and 3, respectively. They were evaluated

in the same way as the Lagrange interpolation with the dif-

ference that the polynomials are given by Eqs. (17), (18),

and (19). Again it is seen that some of the resulting polyno-

mials in Tables VI and VII are sparse, and some of their

coefficients are trivial, such as 61/2.

The second- and third-order B-spline polynomials, their

integrated forms, and the respective PolyBLEP residuals are

depicted in Fig. 7. Figures 7(a) and 7(d) show that the

B-spline interpolation polynomials form bell shapes with

FIG. 6. Signal-processing structure that implements the polynomial correc-

tion of a trivial waveform, such as a rectangular signal. The polynomial

BLEP method based on the integrated first-order Lagrange interpolation

(see Table I) is shown.

TABLE VI. Second-order (N¼ 2) B-spline polynomials, their integrated

forms, and the corresponding BLEP residuals.

Span B-spline polynomial (0.5�D< 1.5)

�1.5T…�0.5T D2/2�D/2þ 1/8

�0.5 T…0.5T �D2þ 2D� 1/4

0.5T…1.5T D2/2� 3D/2þ 9/8

Span Integrated B-spline polynomial (0.5�D< 1.5)

�1.5T…�0.5T D3/6�D2/4þD/8� 1/48

�0.5T…0.5T �D3/3þD2�D/4þ 1/12

0.5T…1.5T D3/6� 3D2/4þ 9D/8þ 7/16

Span BLEP residual (0� d< 1)

�1.5T…�T d3/6� d2/4þ d/8� 1/48, when 0.5� d< 1

�T…�0.5T d3/6þ d2/4þ d/8þ 1/48, when 0� d< 0.5

�0.5T…0 �d3/3þ d2� d/4þ 1/12, when 0.5� d< 1

0…0.5T �d3/3þ 3d/4� 1/2, when 0� d< 0.5

0.5T…T d3/6� 3d2/4þ 9d/8� 9/16, when 0.5� d< 1

T…1.5T d3/6� d2/4þ d/8� 1/48, when 0� d< 0.5
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smooth joints and converge to a Gaussian curve as the inter-

polation order increases. While the Lagrange interpolation

polynomials or their derivatives have discontinuities

between segments, the B-spline interpolation polynomials

are continuous up to (N – 1)th order derivatives, because

they are built on successive convolutions of the rectangular

pulse. Applying the convolution theorem and knowing that

the Fourier transform of a rectangular pulse is a sinc function

results in the Fourier transform of the Nth-order B-spline

interpolation polynomial

BNðxÞ ¼ sincNþ1 x
2p

� �
: (20)

Therefore, the spectra of B-spline interpolation polynomials

decay faster than those of the same-order Lagrange interpo-

lation polynomial, implying that the bandlimited step func-

tion using the B-spline interpolation can suppress aliasing

more effectively.

Figure 8 shows two sawtooth waveforms and their spec-

tra using the B-spline PolyBLEP method. Compared to the

spectra in Fig. 5, aliasing is reduced more, given by the

power of the sinc function. However, the desired harmonic

components at high frequencies are reduced more in Fig. 8

than in Fig. 5. Again, an equalizing filter can be used to

boost the level of harmonics at high frequencies. The two

coefficients of the second-order FIR filter of Eq. (16) were

optimized for the B-spline PolyBLEPs of order 3 and 4, see

Table IV. Using the equalizing filter, the harmonic levels do

not deviate more than 1 dB from the ideal.

Again, it can be noted that the odd-order B-spline Poly-

BLEPs are computationally, at least, as complex as the com-

putation of the higher even-order B-spline PolyBLEP

correction function. Thus, it is highly recommended to use

even-order B-spline PolyBLEPs.

IV. EVALUATION OF THE PROPOSED ALGORITHMS

As shown in Figs. 5 and 8, the proposed PolyBLEP

algorithms are not perfectly bandlimited and they still con-

tain some aliasing. However, the aliasing may not be per-

ceived by the human hearing system in certain conditions

due to a psychoacoustic phenomenon called frequency mask-

ing.50 An aliased component with sufficiently low amplitude

can be masked in the sensory system by a near-enough har-

monic peak so that the aliased component is not perceived.

In addition, if an aliased component is not masked by the

harmonic components but its level is low, it may become

masked by the hearing threshold. This phenomenon is com-

mon especially at frequencies above 15 kHz, where the hear-

ing threshold increases dramatically.50

A. The highest aliasing-free fundamental frequency

In the evaluation of the sound quality of the proposed

algorithms, the audibility of aliasing could be investigated by

performing a listening test for a group of subjects. However,

such subjective tests are dependent on the listening conditions.

Therefore, an objective analysis for the proposed algorithms

is conducted in this paper. In the objective analysis, the mask-

ing phenomena caused by frequency masking and the hearing

threshold are incorporated by investigating whether there is

any aliasing above the maximum of the masking thresholds of

the desired harmonic components and the hearing threshold.

Here, computational models of the hearing threshold and the

FIG. 7. Continuous-time impulse responses of the (a) second-order and (d)

third-order B-spline interpolation, the corresponding integrated impulse

responses (solid line) together with the unit step function (dashed line) in (b)

and (e), and the corresponding BLEP residuals in (c) and (f).

FIG. 8. Sawtooth waveforms produced by the (a) third-order and (c) fourth-

order B-spline PolyBLEP methods and their respective magnitude spectra

(b) and (d).

TABLE VII. Third-order (N¼ 3) B-spline polynomials, their integrated

forms, and the corresponding BLEP residual polynomials.

Span B-spline polynomial (1�D< 2)

�2T…�T D3/6�D2/2þD/2� 1/6

�T…0 �D3/2þ 2D2� 2Dþ 2/3

0…T D3/2� 5D2/2þ 7D/2� 5/6

T…2T �D3/6þD2� 2Dþ 4/3

Span Integrated B-spline polynomial (1�D< 2)

�2T…�T D4/24�D3/6þD2/4�D/6þ 1/24

�T…0 �D4/8þ 2D3/3�D2þ 2D/3� 1/6

0…T D4/8� 5D3/6þ 7D2/4� 5D/6þ 7/24

T…2T �D4/24þD3/3�D2þ 4D/3þ 1/3

Span BLEP residual (0� d< 1)

�2T…�T d4/24

�T…0 �d4/8þ d3/6þ d2/4þ d/6þ 1/24

0…T d4/8� d3/3þ 2d/3� 1/2

T…2T �d4/24þ d3/6� d2/4þ d/6� 1/24
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frequency masking approximated from experimental data are

exploited.50 The same perceptual evaluation method has pre-

viously been used by Nam et al.36 and Välimäki et al.29

The hearing threshold is given as the absolute sound-

pressure level (SPL) by

Tðf Þ¼ 3:64
f

1000

� ��0:8

�6:5exp �0:6
f

1000
�3:3

� �2
 !

þ10�3 f

1000

� �4

; (21)

where f is the frequency in Hz.51 Frequency masking is mod-

eled as a spread function for a masker, as given by an asym-

metric function52

SðLM;DzbÞ ¼ LM þ ð�27þ 0:37 maxfLM � 40; 0g
� hðDzbÞÞ Dzbj j; (22)

where LM is the SPL of a masker in dB, Dzb is the difference

between the frequencies of a masker and a maskee in Bark

units, and h(Dzb) is the step function equal to zero when

Dzb< 0 and equal to one when Dzb� 0. The spreading func-

tions given by Eq. (22) set their peaks equal to the levels of

the maskers. To match the experimental data, they are

shifted down depending on the type of the masker. For a

tonal masker the downshift is greater than for a noise-like

masker. As a bandlimited oscillator contains nearly tonal

maskers, the downshift level is set to 10 dB.53 Furthermore,

to have consistent analysis results, the spectral power of the

oscillators is scaled to a reference SPL. For the reference

level the power of a sinusoid alternating between –1 and 1

was chosen, matching to a SPL of 96 dB, which is a common

choice in audio coding.

Figure 9 shows the spectra of sawtooth waveforms cor-

rected with the second-, third-, and fourth-order Lagrange

PolyBLEP approaches with a fundamental frequency of 6

645 Hz using the described objective analysis approach.

Equalizing filters are not used here or in any other evaluation

in this paper. The maximum of the hearing threshold and the

masking threshold of the desired components is plotted with

a dashed line in Fig. 9. As can be seen, all Lagrange

approaches have some aliased components above the audi-

bility threshold, as indicated with circles. As the order

increases, the level of the aliased components is decreased.

The analysis for the third- and fourth-order B-spline Poly-

BLEP approaches is shown in Fig. 10. Now, the third-order

B-spline PolyBLEP contains some audible aliasing but the

fourth-order case is aliasing-free, see Fig. 10(b).

By comparing Figs. 9 and 10 it appears that the B-spline

PolyBLEP approach is slightly better than the Lagrange

approach of the same order. In order to qualify this percep-

tion, the highest fundamental frequency up to which the ali-

asing is below the masking threshold was identified for a

sawtooth waveform generated by the proposed PolyBLEP

algorithms. The highest aliasing-free fundamental frequen-

cies are listed in Table VIII for the PolyBLEP approaches

and for three different lengths of a BLEP approach imple-

mented as a look-up table made of a windowed and over-

sampled ideal BLEP residual. In the look-up table BLEP

approach (LUT-BLEP), the cut-off frequency scaling factor

of a¼ 1, an oversampling factor of 64, and a Blackman win-

dow were used.

As can be seen in Table VIII, the second-order Poly-

BLEP is free from aliasing up to about 2 kHz above which

there is only one octave in a piano keyboard range (from

27.5 Hz to 4.2 kHz). Therefore, the second-order PolyBLEP

can be considered aliasing-free in the frequency range of in-

terest in most musical applications. It can also be verified

that the highest aliasing-free fundamental frequency

increases as the order of the correction polynomial increases

and that the B-spline PolyBLEP approach is better than the

Lagrange approach of the same order. The third-order B-

spline PolyBLEP and both fourth-order PolyBLEPs are free

of aliasing in the entire piano range. It should also be noted

that the fourth-order B-spline PolyBLEP is aliasing-free up

FIG. 9. Spectrum of a sawtooth wave with fundamental frequency of 6645

Hz using the sample rate of 44.1 kHz corrected with the (a) second-order,

(b) third-order, and (c) fourth-order Lagrange PolyBLEP approach. The

desired magnitudes of the non-aliased components are marked with crosses.

The dashed line represents the maximum of the hearing threshold and the

masking threshold of the non-aliased components, assuming that the saw-

tooth wave is played back at 96 dB SPL. The aliased components above the

perceptual threshold are indicated with circles.

FIG. 10. Spectrum of a sawtooth wave with fundamental frequency of

6645 Hz corrected with the (a) third-order and (b) fourth-order B-spline

PolyBLEP methods.
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to almost 8 kHz. At that fundamental frequency the signal

contains only two harmonic components in the human hear-

ing range.

Furthermore, as the fourth-order PolyBLEPs modify only

four samples around the waveform transition, the highest

aliasing-free fundamental frequency for a LUT-BLEP

approach that also modifies only four samples was sought for

comparison. One can see in Table VIII that the result for the

corresponding LUT-BLEP is only a fraction of the highest

aliasing-free fundamental frequency of the fourth-order Poly-

BLEP approaches. Increasing the number of samples to be

modified in the LUT-BLEP approach to 32 makes its highest

aliasing-free fundamental frequency to be comparable to the

second-order polynomial approach. Yet, if the number of sam-

ples to be modified in the LUT-BLEP approach is increased

to 64, the result becomes somewhat comparable to the third-

order PolyBLEP approaches. Clearly, the windowed, over-

sampled BLEP residual cannot compete with the polynomial

approximations proposed in this work.

Comparing the results of Table VIII to the highest

aliasing-free fundamental frequency of a sawtooth waveform

obtainable by a BLIT algorithm utilizing the third-order B-

spline interpolator as the bandlimited impulse (4593 Hz),36 it

is noted that the integration before the synthesis phase (as

done in the BLEP approach) produces better alias reduction

performance with polynomial approximations having the

same order. This has been noted to be the case for the look-

up table approaches.39

B. Computational analysis on the level of aliasing

The level of aliasing as a function of the fundamental

frequency can be investigated by computing a perceptual

measure that takes into account the audible aliasing at all fre-

quency bands. For such analysis there exist two standard

measures, perceptual evaluation of audio quality (PEAQ)54

and noise-to-mask ratio (NMR),55,56 which both compare the

alias-corrupted signal to a clean, ideally bandlimited signal.

Both of these measures were computed for the proposed

approaches.

However, the PEAQ analysis produced results that were

inconsistent with the observations made above about the

audibility of aliasing. For example, the sawtooth wave with

fundamental frequency 41.2 Hz (note E1) produced by the

four-point LUT-BLEP approach is supposed to be aliasing-

free according to our analysis, but this signal received a

PEAQ score about two grades lower than the other sawtooth

waves below 77.8 Hz. Similarly ambiguous PEAQ analysis

results were obtained for other compared algorithms at dif-

ferent frequency ranges. These observations raise the ques-

tion of whether PEAQ is meaningful for analyzing the

audible disturbance caused by aliasing, and therefore it was

dropped from further investigations.

The NMR results were consistent and matched quite well

with the analysis presented in Figs. 9 and 10. The NMR is

computed by comparing the alias-corrupted signal to a band-

limited reference signal composed using the additive synthesis

approach10 from estimated amplitudes and phases of the har-

monics of the corrupted signal in order to avoid errors. More

specifically, the algorithm uses the error signal, i.e., the differ-

ence between the corrupted and aliasing-free signals. For both

the error and the bandlimited signals a 1024-point magnitude

spectrum is computed with FFT using the Hann window. In

order to approximate the critical bands of hearing, the spectra

are divided into segments for each of which an average energy

is computed and converted to the decibel scale. A fraction of

the energy from each critical band is copied to the neighbor-

ing bands using an interband spreading function to simulate

the frequency masking phenomenon. The hearing threshold is

taken into account as an additive term. Finally, the resulting

energy for each band is computed, energies of all bands are

summed, and a single NMR figure is described as the ratio of

the error to the mask threshold computed using the operations

given above. In the evaluation given in this paper, the sample

rate of 44.1 kHz was used. The choice of the sample rate

affects the choice of critical bands and spreading functions. In

NMR figures, smaller values are considered better, and in

NMR evaluations, often performed in audio coding applica-

tions, the NMR values below �10 dB are considered to be

free from audible artifacts.56

TABLE VIII. Highest fundamental frequency that is perceptually aliasing-

free for a sawtooth signal corrected with a polynomial (Lagrange and B-

spline) or a look-up table BLEP (LUT-BLEP) method. In the LUT-BLEP

residuals, the cut-off frequency scaling factor of a¼ 1, an oversampling fac-

tor of 64, and a Blackman function were used, and K indicates the number

of samples to be corrected.

Correction function Fundamental frequency

LUT-BLEP, K¼ 4 358 Hz

LUT-BLEP, K¼ 32 2036 Hz

PolyBLEP, NI¼ 2 2135 Hz

Lagrange PolyBLEP, NI¼ 3 3236 Hz

B-spline PolyBLEP, NI¼ 3 4591 Hz

LUT-BLEP, K¼ 64 4595 Hz

Lagrange PolyBLEP, NI¼ 4 5134 Hz

B-spline PolyBLEP, NI¼ 4 7845 Hz

FIG. 11. Noise-to-mask ratio (NMR) figures for sawtooth waveforms

obtained by trivial sampling (plus signs), four- (dots) and 32-point (squares)

look-up table BLEP method (LUT-BLEP), and the second-order Lagrange

PolyBLEP method (diamonds) as a function of the fundamental frequency.

The NMR of the second-order DPW algorithm is plotted with dashed line

for comparison.
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Figure 11 presents the NMR figures as a function of the

fundamental frequency for a trivially sampled sawtooth

(plus signs), for LUT-BLEP approaches modifying four

(dots) and 32 (squares) samples around the transition, for the

second-order PolyBLEP approach (diamonds), and for the

second-order differentiated polynomial (parabolic) wave-

form (DPW)25,29 approach (dashed line). In LUT-BLEP, the

cut-off frequency scaling factor of a¼ 1, an oversampling

factor of 64, and a Blackman window were used. Note again

that the second-order PolyBLEP method corresponds to inte-

grated linear interpolation, which is the same as first-order

Lagrange and first-order B-spline interpolation. For the anal-

ysis, fundamental frequencies from the lowest piano key up

to an octave above the highest piano key were considered.

As can be seen in Fig. 11, the second-order PolyBLEP

approach is below the �10 dB threshold up to over 2 kHz,

that is clearly higher than the threshold crossing of, for

instance, the second-order DPW algorithm approximately at

900 Hz. At 2 kHz, the second-order PolyBLEP produces an

improvement of over 30 dB when compared to the second-

order DPW algorithm and about 70 dB when compared to the

trivial sampling. At 8 kHz, the improvement is smaller, still

being about 20 dB when compared to the second-order DPW

and 40 dB when compared to the trivial sampling. Figure 11

also shows that a LUT-BLEP approach modifying four sam-

ples provides NMR figures comparable to the second-order

DPW algorithm. The number of samples to be modified in the

LUT-BLEP approach must be increased to 32 in order to have

NMR figures that are comparable to the second-order Poly-

BLEP approach.

The NMR figures for third-order Lagrange (triangles),

fourth-order Lagrange (crosses), third-order B-spline (circles),

and fourth-order B-spline PolyBLEP approaches (stars) are

shown in Fig. 12. As can be seen, the NMR figures of all these

PolyBLEP approaches are below the –10 dB threshold up to

4 kHz. Above 4 kHz, the NMR figures decrease as the order

of the PolyBLEP approach increases. Furthermore, the

B-spline PolyBLEP approaches [Fig. 12(b)] have smaller

NMR figures than the Lagrange approach [Fig. 12(a)] of the

same orders. The third-order Lagrange PolyBLEP crosses the

–10 dB threshold around 4 kHz whereas the third-order

B-spline PolyBLEP stays below the threshold up to 5 kHz.

The fourth-order Lagrange PolyBLEP goes above the thresh-

old at around 7.5 kHz while the fourth-order B-spline Poly-

BLEP remains below at all evaluated fundamental

frequencies.

From Figs. 11 and 12 it can be concluded that a low-

order polynomial correction function can be efficiently used

in the reduction of aliasing in digital classical waveform syn-

thesis. The second-order PolyBLEP is sufficient, apart from

the highest octave of the piano range, and any higher-order

PolyBLEP can be considered to be aliasing-free in the entire

piano range. If the frequency range of interest is extended

one octave above the piano range, the fourth-order B-spline

PolyBLEP provides an aliasing-free oscillator.

C. Estimation of the computational load

The number of operations required in addition to the triv-

ial waveform generation in one period of oscillation for the

second- and fourth-order PolyBLEP algorithms are listed in

Table IX. As can be seen, the number of additional operations

is about the same for both fourth-order approaches. The third-

order polynomial correction functions require different

amounts of additional operations depending on the range of

the fractional delay (cf. Tables II and VI) and were therefore

ignored in the listing. In addition to the operations listed in

Table IX, the PolyBLEP approach also requires a multiplica-

tion to determine the fractional delay of the transition, see

Eq. (13). However, if the fundamental frequency changes

from the previous discontinuity, a division is required. It

should be noted that Table IX includes the additions needed

in applying the correction function to the trivial waveform.

In the LUT-BLEP approach, where the correction func-

tion is read from a table, the computation of a single correc-

tion sample requires two reads from the residual table, two

multiplications and two additions if linear interpolation is uti-

lized to improve accuracy. Furthermore, when an over-

sampled table is used, the computation of the correct locations

of the table reads requires one additional multiplication. The

overall numbers of additional operations are then 2K reads,

2Kþ 1 multiplications, and 2K additions for the computation

of the correction function of length K. Applying the correction

function to the trivial waveform increases the number of addi-

tions by K. As with the PolyBLEP approach, the computation

of the fractional delay requires a multiplication or a division,

depending on whether the fundamental frequency has changed

or not.

FIG. 12. NMR figures for sawtooth waveforms obtained by (a) the third-

order Lagrange (triangles), the fourth-order Lagrange (crosses), (b) the

third-order B-spline (circles), and the fourth-order B-spline PolyBLEP

methods (stars).

TABLE IX. Additional operations required in even-order PolyBLEP

approaches with respect to the trivial signal generation in one period of

oscillation.

PolyBLEP function Multiplications Additions

PolyBLEP, NI¼ 2 4 4

Lagrange PolyBLEP, NI¼ 4 14 15

B-spline PolyBLEP, NI¼ 4 13 15
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When comparing the alias reduction performance of the

PolyBLEP and the LUT-BLEP approaches, the number of

required operations is greatly less in the PolyBLEP

approach. For instance, the alias reduction performance

obtained by the LUT-BLEP approach modifying 32 samples

around the transitions can be achieved with the second-order

PolyBLEP that requires 8 operations, whereas the LUT-

BLEP requires almost 450 operations in total. Furthermore,

whereas the number of required unit delays in the correction

circuit of the PolyBLEP approach is equal to the order of the

underlying interpolation polynomial, the LUT-BLEP

approach requires K – 1 unit delays. When the overlapping

of correction functions is undesirable, the highest obtainable

fundamental frequency is clearly higher for the polynomial

correction functions than for the LUT-BLEP correction func-

tions having the same alias reduction performance. There-

fore, the proposed methods, and especially the fourth-order

B-spline PolyBLEP, are well suited for the synthesis of

bandlimited digital classical waveforms when both the alias

reduction performance and the number of additional opera-

tions are taken into account.

V. CONCLUSION

In this paper, an approach that suppresses the perceived

aliasing in the digitally synthesized periodic geometric

waveforms by applying a correction function to the non-

bandlimited waveform as a post-processing step was investi-

gated. The ideal correction function was derived in closed

form and polynomial approximations of the ideal correction

function were discussed. By using a polynomial correction

function, look-up tables that are typically used to store the

correction function are not needed. Furthermore, the tempo-

ral discretization associated with the tabulated correction

functions is avoided and oversampling that improves the ac-

curacy of the correction function positioning does not have

to be considered. When using a polynomial correction func-

tion, the alias reduction performance can be improved by

increasing the polynomial order. The polynomial correction

functions are also computationally efficient to evaluate,

because the polynomials are sparse and some of their coeffi-

cients have common terms.

It was shown that with the proposed polynomial correc-

tion functions, integrated Lagrange and B-spline interpola-

tors, the aliasing at low and middle frequencies, where

human hearing is most sensitive, is suppressed the most.

Using a computational model of the audibility of aliasing it

was shown that a sawtooth waveform corrected with a

second-order correction function is aliasing-free when the

fundamental frequency is less than 2.1 kHz when the sample

rate of 44.1 kHz is used. With a fourth-order correction func-

tion the sawtooth is free from aliasing in the whole piano

range (from 27.5 Hz to 4.2 kHz). In order to reach compara-

ble results with the traditional tabulated correction function

approach, the length of the correction table needs to modify

over ten times more samples around each discontinuity than

the polynomial method.

In addition to the highest aliasing-free fundamental fre-

quency, the overall aliasing level at all frequency bands of

the proposed polynomial correction function approaches

were evaluated using a standard computational perceptual

sound quality measure called the noise-to-mask ratio. The

noise-to-mask ratio measures showed similar results as the

analysis of the highest aliasing-free fundamental frequency,

and it was proven that the integrated B-spline interpolators

provide a better alias reduction than the integrated Lagrange

interpolators of the same order. According to the noise-to-

mask ratio measures, the third-order B-spline and the fourth-

order Lagrange-based polynomial correction functions are

free from audible aliasing in the whole piano range and the

fourth-order B-spline-based polynomial correction is

aliasing-free up to one octave above the piano range.
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25V. Välimäki, “Discrete-time synthesis of the sawtooth waveform with

reduced aliasing,” IEEE Signal Process. Lett. 12(3), 214–217 (2005).
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