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Abstract. Aiming for high-level intentional control of audio feedback,
though microphones, loudspeakers and digital signal processing, we pre-
sent a system adapting toward chosen sonic features. Users control the
system by selecting and changing feature objectives in real-time. The sys-
tem has a second-order structure in which the internal signal processing
algorithms are developed according to an evolutionary process. Geno-
types develop into signal-processing algorithms, and fitness is measured
by analysis of the incoming audio feedback. A prototype is evaluated
experimentally to measure changes of audio feedback depending on the
chosen target conditions. By enhancing interactivity of an audio feedback
through the intentional control, we expect that feedback systems could
be utilized more effectively in the fields of musical interaction, finding
balance between nonlinearity and interactivity.
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1 Introduction

We use the term audio feedback to refer to systems of positive acoustic/digital
feedback in which signals received by one or more microphones are amplified and
played through one or more loudspeakers with sufficient energy gain to create a
persistent loop. Such systems support unique features, such as nonlinearity, emer-
gence, self-organization and openness to the environment, and efforts to leverage
these properties in music composition and sound art are numerous [1–5].

Many prior work with audio feedback systems have been characterized by an
emphasis upon the emergent interactions the medium supports, while intentional
control of sonic behaviours is given less emphasis. Where performer interventions
are supported these are generally limited to deliberate sounds and parameter
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changes, however due to the nonlinear dynamics of the medium the overall direc-
tions of tendencies remain unknown and thus unintentional. Our research aims
to support intentional control through tendencies while preserving the attractive
nonlinear characteristics of audio feedback, such as unpredictable yet rich tran-
sients, in order to open up new possibilities of musical application.

In this paper, we present a system adapting toward a certain chosen sonic prop-
erties such as average pitch, vibrato, tremolo, brightness, and spectral tonality:
recognizable features of the feedback sound. The system allows users to select in
real-time sonic characteristics as the target conditions of the system. Adaptation
toward such conditions is achieved using a second-order structure which can orga-
nize and replace internal signal processing algorithms. This second-order structure
uses an evolutionary process by selecting and changing the types and parameters
of signal processing components. We evaluate a prototype through measurement
of average and highest fitness curves over generations in several contexts.

2 Motivation

Although audio feedback is typically viewed as a problem to avoid in music and
telecommunication industries, some performers have deliberately utilized feed-
back creatively. For example, LIES(topology) [5] is an improvisation performance
based on the interaction between a feedback system and performers. The system
is centred on a feedback delay network (FDN), in which several delay lines con-
nected by a feedback matrix mediate the input and the output. Some feedback
loops apply signal processing components, such as a ring modulator, frequency
shifter, granulator, wave-shaper and reverberator. These form a complex network
in which objects can be connected by a mixer or a ring modulator. Performers
alter the topology by controlling amplitude changes of the recirculating signals
and change the relations between the components by modifying parameters of
the components.

Audible Eco-systemic Interface (AESI) [1] is a compositional work that inter-
acts with its acoustic environment through sonic feedback, depending on ambient
noise as its information source. The central idea is a self-feeding feedback loop,
almost identical to the basic feedback structure. Features extracted from the
received sound are compared with the original signal, and the difference is used
to control parameters for sound synthesis, thereby adapting the system toward
the room resonance.

Di Scipio notes how non-linear feedback systems may lead to new, emergent
high-level behaviors, generated and maintained by a network of low-level compo-
nents [6]. An implication is that specific performances cannot be formally defined
or accurately predicted in advance. Instead, he directs attention to the technical
conditions and sonic interactions of the system. As identities of feedback-based
music systems are determined by the relations between low-level components,
this results in fixed mappings from analysis parameters of the received signal to
signal-processing parameters: the composer’s role is to establish the mappings.

However, Kollias [4] criticizes that by doing so composer loses control over the
overall sonic shape, as the system only determines microstructural sonic design.



Toward Certain Sonic Properties of an Audio Feedback System 115

Although high-level behaviors emerge through a bottom-up organization, control
of them is a distinct issue. By referring to Mitchel’s work [7], he instead suggests
that adaptive systems must preserve a balance between bottom-up and top-down
processes. He proposed Ephemeron [4,8], a feedback-based improvisation sys-
tem, which is presented as a metaphorically living organism and consists of cells
which are sonic units. This system is acoustically adaptive as the cells recognize
environmental characteristics in an evolutionary process, yet also features both
high- and low-level controls for producing music. Specifically, a composer pro-
poses the emergence of certain sonic properties by design at a micro-structural
level, while a performer controls the overall sonic result by modulating global
parameters. This prevents the system’s tendency toward a stable state. Never-
theless, direction of the tendency is unknown because the unpredictability of
nonlinear dynamics hinders prediction.

Our motivation is to more deeply explore intentional control toward specified
sonic properties without sacrificing attractive nonlinearities of the audio feed-
back itself. Intentional control means that people can observe desired tenden-
cies in the feedback sound by setting and changing goal directions in real-time,
enhancing interactivity through regulative processes. This would support idio-
syncratic interactive applications that combine context-specificity, nonlinearity
and interactivity; such as a sound installation sensitive to the acoustic envi-
ronments according to audience’s intentions, a generative improvisation system
responding to its environment, or a sound generator that repeatedly generates
new sound materials according to user-specified conditions.

3 System Design

Our system is built around three design ideas, outlined in the following
subsections:

– Goal-directedness: sonic features are specified as target conditions, which can
be controlled by users in real-time

– Second-order feedback structure: signal processing uses a modular approach
to support diversity and dynamism

– Evolutionary process: the controller uses an evolutionary process for design of
the second-order feedback structure.

Figure 1 shows an overview of the system. The controller, which designs the
second-order feedback structure, uses an evolutionary process. This removes the
necessity of manually searching for the optimal structure for a target condition.
We do not need to care about the specific design, only the final characteristics:
we provide the goal, and the system evaluates several structures to achieve it.

3.1 Goal-Directedness Toward a Specific Sonic Condition

A control method in cybernetic systems is presenting a goal and designing the
system to follow it: it is referred to as goal-directed behavior [9]. An autonomous
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Fig. 1. Conceptual diagram of our system, which proposes (1) specific sonic features
as target conditions, (2) second-order feedback structure and (3) evolutionary process
for design of the second-order structure. Solid lines represent audio-rate signal flows
while dotted lines sub-audio rate (data) signal flows.

system pursues its own purpose by trying to resist obstructions from the environ-
ment that may adversely affect getting close to the target state: goal-directedness
regulates perturbation. By setting specific sonic features as its own purpose, an
audio feedback system can adapt toward them and this implies the possibility of
exterior/guided intentional control. For our purposes, this requires real-time fea-
ture extraction of the feedback sound to measure present state and its deviation
from a target state.

We investigated feature extraction methods from several improvisation sys-
tems in which a single or multiple agents interact with external performers.
For example, Murray-Rust et al. [10] and Wulhorst et al. [11] present artifi-
cial intelligence based music compositions, which use real-time acoustic feature
extraction for the purpose of transmitting information to internal agents. These
mostly focused on rhythmic and harmonic information from MIDI signals. Van
Nort et al. [12] recognizes sonic gestures simultaneously by parallel operation of
gestural spaces in different time scales, such as variety, brightness and pitch in
short gestures and phrases in long gestures. Hsu [13] measures loudness, tempo
and timbre from pitch/amplitude envelope and auditory roughness (interference
between partials in a complex tone) of saxophone sounds. Ciufo [14] uses control
methods based on both high-level and low-level audio analysis.

A difference between improvisation systems and audio feedback systems is
that the former typically receive an external sound, such as instrument or voice,
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while the latter receive acoustic reflections and diffusions of their own sound.
Since feedback sound is essentially different from instrumental sounds, note-
based musical analysis is less comprehensive and candidates for target sonic
properties must be broadened to encompass timbral characteristics. We selected
the following sonic characteristics and corresponding measurement methods:

– Average pitch: average fundamental frequency
– Vibrato: standard deviation of the fundamental frequency curve
– Tremolo: standard deviation of the amplitude curve
– Spectral tonality (distinction between tone-like and noise-like signal): spectral

flatness
– Brightness: spectral centroid.

Fundamental frequency is measured using a YIN algorithm [15], a popular pitch
detection method based on a cumulative mean normalized difference function.
Amplitude curve is then measured by local maximum points, positive zero devi-
ation points of a waveform.

3.2 Second-Order Feedback Structure

The system must search for digital signal processing algorithms having the capac-
ity to achieve target sonic properties within unknown and possibly ever-changing
environmental conditions. We suspect that no single, compact signal processing

Fig. 2. The second-order structure connecting two microphones and four loudspeakers
via each line consisting of eight DSP components organized by a controller
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algorithm will satisfy this criteria, however a modular approach can be an effective
alternative. Defined as a mechanism in which a live algorithm is not fixed and can
be replaced by another, the modular approach facilitates creativity by providing
the basis for combinatoric search through a vast space of possibilities [16].

In the self-organized music model [17] the interpretation of the audio input
(denoted P) continually provides information (denoted F) about the acoustic
environment. Neural network and decision tree systems were used to derive F,
and internal processing activities then provide behavioral options that can be
instantly substituted for each other, using a modular mechanism [16]. Neuman
[18] allows composers to generate musical structures in real-time by stochastic
rewriting rules. Ciufo [14] presents an improvisation system pursuing flexibility
through a modular matrix mixing technique. All signal processing modules such
as ring modulation (RM), resonant filtering, and memory are connected to a two-
dimensional signal matrix, enabling links between any input and any output.

We also applied a modular approach in our system to support switching of
internal structure, types, and parameters of signal processing components, in
order to grant greater dynamics and variety in shaping the feedback. As Fig. 2
shows, the system connects microphones and loudspeakers via lines consisting of
several signal-processing components, organized by a controller. Currently ten
component types are possible, each with specific parameter ranges as follows:

– Lowpass Filter: 600∼1200 Hz (cutoff frequency)
– Bandstop Filter: 600∼900 and 3600∼5400 Hz (lower/upper cutoff frequencies)
– Bandpass Filter: 30∼200 and 430∼600 Hz (lower/upper cutoff frequencies)
– Amplifier: 3∼100 (amplification degree)
– Frequency Shifter: −300∼300 Hz
– Delay Line: 3∼1000 samples
– Sinewave Generator: 100∼600 Hz
– Feedback: 0.5∼3 (amplification degree)
– Feedforward: 0.5∼3 (amplification degree)
– Bypass (no operation).

Each component also includes an amplifier for gain control, which is smoothly
ramped through zero to avoid clicks when a DSP structure is switched.

3.3 Evolutionary Process for Second-Order Structure Control

Our system uses an evolutionary process to design the second-order feedback
structure. Evolutionary algorithms are a well-established method to explore
huge parameter spaces, including tasks in music composition and sound syn-
thesis [19]. In [16,20] genotypes correspond to continuous-time recurrent neural
networks (CTRNNs), which improvise through interactions with live performers.
A CTRNN is a network of simple artificial neurons in which each neuron inter-
connected via weighted synapses and processes a floating-point value or main-
tains a state. The fitness of each genotype is measured by the absolute difference
between corresponding pairs of values in input and output sequences; repeated
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sequences receive zero score. Individuals of high fitness values in a population
are chosen to generate individuals in the next population, with mutation. In [20]
each network controls parameters for sound playing, such as parameters for a
FM synthesizer and playback position for a granular sample player. Fastbreeder
[21] is a genetic programming synthesizer. It grows code for sound synthesis
by choosing from automatically generated functions. Syntaxis [22] is an exam-
ple using a genetic algorithm in an invariable structure of a feedback system:
individuals in a population correspond to bandpass filters and the fitness is mea-
sured by their deviations from resonant frequencies of the feedback sound. Filter
banks thereby gradually evolve to fit the resonant peaks. Use of such genetic
algorithms produces musically interesting results in which target behaviors and
other behaviors not specified by the goals coexist.

Our genotypes consist of pairs of genes to specify the types and parame-
ters of signal-processing components. The manifestation of these genotypes as
phenotypes forms a signal-processing algorithm. Eight genotypes in a present
generation are manifested, and the sound generated as a result of each geno-
type re-enters the system via microphones after being diffused and reflected in
a room. The controller evaluates the fitness of each genotype through a func-
tion measuring deviation of features of the incoming sound from the currently
chosen target conditions. Individuals in subsequent generations are determined
according to the fitness criteria of previous generations, with small mutations,
so that the feedback sound gradually evolves toward the objective.

Reproduction incorporates the possibility of mutations in the parameters or
type of a component. Based on informal experimentation we began with default
mutation rates of 0.08 for the parameter change and 0.05 for the component
change in each gene. Accordingly, the parameter change happens rather fre-
quently, but this responds to a necessary condition of the task. Our system is
subject to real-time/real-space bottleneck: the population size is limited because
the evaluation of each individual must take place in real-space over a reasonable
duration. It is analogous to the fitness bottleneck familiar to aesthetic selec-
tion and interactive evolution [23,24], yet different in that it is not the human
that is a limiting evaluation factor. Nevertheless, an interactive installation for
an audience may need to privilege fast adaptation over stability and accuracy,
suggesting the use of higher mutation rates.

4 Results

We implemented this design as software authored using openFrameworks for
the analyzer and controller (Fig. 3) and Max/MSP for the second-order DSP
structure (Fig. 4). In an installation, four ESI nEar05 monitor speakers were
installed at each corner of a room, and SM57 and SM58 microphones were placed
in the middle facing toward the floor to avoid direct sound paths.

This installation was evaluated to show how sonic behavior of the system
would change according to the target conditions. For example, Fig. 5 presents
flatness states (spectral centroid values) when the minimum or maximum spec-
tral flatness was selected as the target condition, which respectively drives the
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Fig. 3. The analyzer and the controller, authored with openFrameworks. Each 8 by 8
block represents a genotype of the present generation. Reading across the row gives the
path from one of the microphones to one of the loudspeakers; with two microphones
and four loudspeakers this makes 8 rows. The current best candidate is shown in pink
at the top. The user can select target conditions and control system parameters using
the black panels at the right-hand side. Numerical values resulting from the evaluations
are given in the bottom-right corner (Color figure online).

(a) (b)

(c) (d)

Fig. 4. (a) Main patch for the second-order signal processing structure, authored with
Max/MSP, and (b) subpatches for operating branch lines between the microphones
and the loudspeakers, (c) designating each DSP component and parameter from every
candidate based on genetic information and (d) operating the DSP algorithms and
linking the feedback loop.
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Fig. 5. Average (solid lines) and optimal flatness values (dotted lines) of individuals
in each generation when the maximum or minimum flatness is selected as a target
condition, which is represented as a green dash-dotted line. Red and blue lines are
measured when the target state is set as maximum and minimum value, and target
states are described as dashed lines (Color figure online).

Table 1. Comparisons of the sonic features of the feedback sounds in the first popu-
lation and 15th population

Initial population 15th population

Target condition Mean Optimum Mean Optimum

Average fundamental
frequency (average pitch)

1000 (Hz) 167 472 528 845

100 (Hz) 279 128 121 100

SD of fundamental frequency
(vibrato)

1.2 0.25 0.70 0.91 1.09

0 0.34 0.08 0.12 0.07

SD of local maximum
amplitude (tremolo)

40 5.1 17.8 24.4 30

0 17.8 8.3 10 7.3

Spectral flatness (spectral
tonality)

0.8 0.03 0.27 0.64 0.68

0.1 0.02 0.08 0.07 0.1

Spectral centroid (brightness) 1300 (Hz) 10 351 769 1030

0 (Hz) 281 129 116 75

sound to a pure tone or a white noise. Dash-dotted lines represent the target
conditions: spectral flatness is measured as 0.8 and 0.1 on average when the
system plays a white noise and a pure tone instead of the feedback sound. Both
cases start at below 0.1, but we can observe that it increases to almost 0.8 with
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some fluctuations when targeting noise sound (high flatness). Similarly, Table 1
compares the average and optimal values of individuals at the first and 15th pop-
ulation (after approximately 4 minutes), when one of the five sonic properties is
chosen to be a target condition. Even though variations of the features are lim-
ited to certain ranges, we could find that the features of the feedback sound could
be driven to a certain degree by these target conditions with the evolutionary
process to design the second-order structure. These sounds samples are available
at http://sites.google.com/site/asuramk88/research/feedbackevocontrol.

Figure 6 presents the sonic behaviors when the target condition changes dur-
ing performance. We could observe adaptation of sonic behavior toward the
current target condition as the sound tends to be brighter since the 15th gen-
eration, which is about eight generations after changing the target condition to
high brightness (7th generation). One might expect the possibility of an instal-
lation in which the feedback sound is controlled by the audience who can set
and change the target conditions in real-time.
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Fig. 6. Average (solid lines) and optimal centroid values (dotted lines) of individuals
when a target condition is selected as minimum brightness until the 7th generation,
and changed to high brightness as 1000 Hz spectral centroid.

5 Conclusion

This work presents a system for high-level intentional control of audio feedback,
which uses a second-order structure in which the internal signal processing algo-
rithms are developed according to an evolutionary process. Users control the
system by selecting and changing feature objectives in real-time. A prototype
was implemented and evaluated to observe changes of sonic behaviors depending
on the target conditions. The results show the possibility of intentional control,
which could result in enhancement of interactivity in the overall sonic behav-
iors of feedback systems and lead to sound/music applications which feature a

http://sites.google.com/site/asuramk88/research/feedbackevocontrol
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balance between nonlinear emergence from the relations between low-level com-
ponents and regulation over the overall sonic shape.

The target features are currently closely-tied direct audio analysis features,
however in a broader motivation we hope to extend our system to support
higher-level target features of sound streams that may have more readily musical
application, such as stability, continuity, tension, and contrast. We noted that
varying the mutation rates according to purpose follows a trade-off of the real-
time/real-space bottleneck, such as increasing rates for interactive installation or
decreasing for sound library generation. However we are also keen to investigate
whether varying rates at per-gene or per-operator level, possibly also adaptively,
may improve adaptation. Finally, analysis of the timbre space occupied by a
second-order signal processing structure may also enhance intentional control.
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