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ABSTRACT

While dynamics is an important characteristic in music performance, it has been rarely researched in automatic
music transcription. We propose a method to estimate individual note intensities from a piano recording given
pre-aligned score data of the recording. To this end, we use non-negative matrix factorization in a score-informed
framework, where the basis vectors and weights are constrained to estimate harmonic note spectra and corresponding
intensities, respectively. We examine various choices in the learning process including the use of synthesized note
scale for initialization, type of spectrum, and temporal constraint. We evaluate our method using Saarland Music
Data (SMD) and estimate note intensities in MIDI velocity. The results show that the proposed method makes an
improvement compared to previous work.

1 Introduction

A piece of music is played in different ways depend-
ing on the style and interpretation of the player. The
differences can be computationally analyzed by extract-
ing note information from the performance using an
automatic music transcription (AMT) system and com-
paring them to the sheet music score. However, the
majority of AMT systems handle only the presence
of notes, that is, onset and duration in time, ignoring
other performance information. Among others, dynam-
ics is important along with the temporal information of
notes in analyzing music performance [1]. In particular,
transcribing it at the note level, or evaluating the indi-
vidual note strength, allows to encode the performance
as complete MIDI note messages as well as a detailed
analysis such as comparing dynamics of melody lines
and accompaniment parts [2].

Estimating individual note intensity in polyphonic pi-
ano recordings has been conducted by few work. Ew-
ert and Müller challenged the task using a parametric
model that represents audio spectra with note activity,
spectral envelope, tuning and energy distribution over
partials [3]. They searched the parameter values that
explain the spectrogram most properly after aligning
notes onset and duration. While they showed signifi-
cant improvement compared to a simple energy picking
method, the optimiztion process of the model is non-
trivial. Szeto and Wong proposed a sinusoidal model
to separate chords tones into individual piano tones
and estimated the note intensity as part of the source
separation task [4]. However, the evaluation was con-
ducted only for simple chords rather than actual piano
performance recordings. Also they used a training set
that consists of isolated notes with exactly the same
sound that the evaluation set has.
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Fig. 1: Score-informed NMF with the harmonic constraint in the harmonic-percussive model (Bach BWV841-1).

In this paper, we present a method to automatically
estimate note intensity from polyphonic piano record-
ings using Non-negative Matrix Factorization (NMF).
By learning spectral template of each piano key from
a training set or a piano synthesizer, we can factorize
the spectrogram of the target recording by the basis
vectors and their activations over time. Estimating the
intensity of sound sources in a mixture using NMF was
previously investigated in the context of general sound
recognition [5]. We, however, estimate the intensity
for polyphonic piano music where individual sources
are more homogeneous and correlated to each other
in time and frequency. Also we use a score-informed
NMF framework where the symbolic representations of
music are given as prior information [6]. We examine
learning strategies in the NMF framework and other
choices to improve the estimation accuracy including
fractional power spectrum and temporal constraint in
the framework. We evaluate our method using Saar-
land Music Data (SMD) used in [3] and estimate note
intensities in MIDI velocity. The results show that the
proposed method makes an improvement compared to
previous work.

2 Methods

2.1 NMF Modeling of Polyphonic Piano Music

Our method is based on NMF, which decomposes a
non-negative input V into two non-negative matrices
W and H as V⇡WH. There are various algorithms to
approximate the input V to V̂ = WH. We use the Kull-
back–Leibler (KL) divergence D(V||V̂) and minimize
it by the multiplicative update rule:

W W⌦ (V⌦ V̂�1
)HT

1HT

(1)

H H⌦WT (V⌦ V̂�1
)

WT 1
(2)

where 1 is an all-one matrix of the same size as V, ⌦
means element-wise matrix product, and all divisions
and inverts are also element-wise.

Applying NMF to audio spectrogram returns a set of
spectral vectors W and their activations over time H.
Since this explains the spectrogram in a compositional
manner based on the non-negativity and additivity,
NMF has been widely used to model sound mixtures
[7].

When NMF is applied to music signals, prior knowl-
edge is often employed to obtain musically meaningful
results. One of the implementations is to initialize
each column vector in the W matrix such that only
spectral bins classified as corresponding fundamental
frequency or its harmonics contain non-zero entries
[6]. This enforces harmonicity for the basis vectors
and prevents them from learning spectral distributions
of other notes because the zero entries of the matrix
remains zeros during the multiplicative update of NMF.
Specifically, we used the harmonic constraint proposed
by [6], which sets non-zero entries with the bandwidth
parameter f =± 0.5 semitone for each note.

Our system assumes that pre-aligned music score in
MIDI is provided. Using this infomation, we add an-
other constraint to the NMF. The MIDI data indiates
which note is played at a certain time and how long it
is sustained. We encode this to a piano-roll format and
initialize temporal activation matrix H by setting the
note bars to ones and the other entries of H to zero.

We adopt this score-informed NMF framework in two
different settings. In the first setting, one column of the
basis matrix W accounts for the spectral distribution
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Fig. 2: Four strategies to learn basis matrix and estimate the activations

of a single piano note exclusively. Then, the corre-
sponding row of H yields the temporal activities of the
single piano notes. In this setting, we measure the note
intensity as follows:

I(n) = max
t

n

 jt

n

+r

H
p

n

, j (3)

where p

n

is the index of the basis vector for a note n, tn
is the onset frame of the note provided from the score
and r denotes a search range parameter that can be
adjusted. We call this setting harmonic model. In the
second setting, we use two columns of W to explain a
single piano note following [6]; one is for the harmonic
distribution of a single piano tone and the other is for
the remaining non-harmonic (or percussive) distribu-
tion. In this case, The harmonic and score-informed
constaints are applied to the two types differently. The
harmonic constraint is applied only on the harmonic ba-
sis vectors so that they effectively capture the harmonic
distribution for a single note. The score-informed con-
straint is set to the whole duration of note for harmonic
basis vectors whereas it is to a short attack time (the
length is tunable) for percussive basis vector. This ini-
tialization scheme is illustrated in Figure 1 (a) and (b)
and the corresponding NMF result is shown in Figure
1 (c) and (d). In order to estimate the intensity, we use
activations from the harmonic basis vector because we
observe that they are more proportional to MIDI ve-
locity than those from the percussive basis vector. We
term this second setting harmonic-percussive model.

2.2 Basis Matrix Learning Strategy

We can have multiple choices of learning the basis
matrix and accordingly estimating the activations, de-
pending on which stage (i.e. training or test) the basis

matrix and activations are updated in and what datasets
are used in each stage. Considering this, we design four
different strategies to learn basis matrix as described
in Figure 2. A notable part is that we use a monoph-
nic note scale dataset apart from the polyphonic music
dataset. Although we use harmonic constraint so that
one or two basis vectors exclusively account for a sin-
gle note, learning W directly from polyphonic music
still does not guarantee clean harmonic distributions for
each note because harmonically close notes are played
toghether very often in tonal piano music. In order
to improve the exclusiveness, we use a monophonic
note scale set recored from a high-quality piano synthe-
sizer. Since the target piano tone will be different from
the synthesized one in terms of spectral characteristics,
however, the basis matrix learned from the monophonic
scale set are not fixed but rather used to initialize W
before updated with the polyphonic music sets.

Figure 3 compares the results from each strategy in the
harmonic-percussive model. We can see that spectral
distributions of the training set and the monophonic
note scale set are different from each other by compar-
ing Figure 3(a) and (b), which means that the timbre
and tuning of piano is quite different in the two data sets.
But in Figure 3(b), the harmonic basis vector and the
percussive basis vector are well separated whereas, in
Figure 3(a), the two basis vectors are not perfectly sep-
arated in the first harmonic and fifth harmonic. Figure
3(c) shows the advantage of using both datasets: proper
harmonic characteristics, and separation between har-
monic and percussive basis vectors. Figure 3(d) also
shows that the fourth strategy can achieve the similar
advantage, though this strategy refines spectral basis
using only a piece from the test set, rather than the
whole training set.
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Fig. 3: Comparison of the basis vector in the differ-
ent learning strategies (A[2, MIDI pitch 44).
The circles indicates the partials where the har-
monic basis vector and percussive basis vector
interfere with each other.

We observed that iterating the update rule too many
times does not necessarily guarantees the best results
in strategy (c) and (d) as found in [8]. The optimal
number of iteration was experimentally searched. For
example, when trained with the training set in strategy
(c), we iterated the updating rule ten times. When the
note intensity is estimated in strategy (d), we iterated it
five times.

2.3 Fractional Power Spectrum

The principle of NMF assumes additivity based on
non-negative basis vectors and weights. Physically,
however, a mixture of sounds satisfies the additivity
only when their phases are exactly identical. Other-
wise, the amplitude of the sum will be smaller than
the sum of the individual amplitudes. Since our task
is very sensitive to the amplitude, this additivity is an
important issue. We address this problem by using

Fig. 4: Comparison between linear spectrogram and
power spectrogram. The activation of each note
in the power spectrogram case is constant re-
gardless of whether the notes are overlapped.

fractional power spectrum. In [9], the fractional power
spectrum is defined as a-spectrogram, p

a where p is
the magnitude spectrum and a is a continuous value.
We attempted to use a set of a (1.0, 1.3, 1.5, 1.8, 2.0).
We observed that the intensity estimation worked best
when a is 2, that is, with power spectrogram. This
seemed opposite to the result in the context of source
separation [9] where a = 1.0 is optimal. This might
be because our task, which estimates note intensities
from the peak activations, is different from the source
separation tasks, which is mainly concerned with reduc-
ing average divergence between the input signal and its
model.

Figure 4 shows the effect of different fractional power
spectrum for simple examples where two notes in oc-
tave unison (C3 and C4) are played individually or
simultaneously with constant MIDI velocities. Ideally,
one note should maintain the same level of intensity
regardless of the existence of the other note. However,
when linear spectrum is used, the peak activations of
the C4 note decrease if it is played while the C3 note
is sustained or both are played at the same time. On
the other hand, when power spectrum is used, the peak
activations of the C4 note remains in the same level.
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2.4 Partial Temporal Constraint

Yet another option to the NMF framework is temporal
regularization. Previous research showed that adding
temporal continuity by using parameters obtained from
sources [5] or by reducing the the difference between
adjacent entry [10] in H matrix can improve the sep-
aration quality. Since piano notes gradually decrease
in the sustained part and the activations will follow
the pattern, we also apply the temporal continuity con-
straint. Referring to [10], we use the following cost
function c

t

:

c

t

(H) =
I

Â
i=1

1
s2

T

Â
t=2

(h
i,t �h

i,t�1)
2 (4)

where s =
q
(1/T )ÂT

t=1 h

i,t
2. We incorporate this cost

by adding a gradient of the cost with a scaling factor to
the gradient of KL divergence of V and WH.

Employing this constraint to the whole H, however,
restrains the activation from rising at the attack part
of note events since it smooths the sudden increase of
basis activation. Since we pick the peak activation at
the attack part to identify the intensity of the note, this
can be critical to our task. Therefore, we modify the
temporal cost function c

t

so that the function is applied
only when notes are sustained. This is possible because
we already have pre-aligned score information. In the
harmonic-percussive model, the constraint is applied to
only the activation of harmonic basis vectors.

Figure 5 shows the effect of the partial temporal con-
straint. As we can see from the difference between
(a) and (b), the temporal constraint makes the activa-
tion of harmonic basis vector of each note smooth as
indicated in the sustaining part of notes marked with
the red circles. Also, the attack parts of notes are not
smoothed as we intended. In Figure 5 (c), we can see
that spurious peaks near note offset are suppressed by
the temporal constraint. The spurious peaks typically
occur when two or more notes share many harmonics,
for example, notes in octave and one note ends earlier
than others in score. In this case, since piano notes are
usually sustained even after the offset time in score,
especially when pedals are pressed, the basis vector for
one note can explain the spectrum of other notes and
this results in the sudden jump around note offsets. In
Figure 5 (c), the offset of note A[1 (MIDI 32) is one
frame earlier than A[2 (MIDI 44). Thus, without the

Fig. 5: Effect of partial temporal constraint (Beethoven
Op. 27-1, 2nd mov.). The circles show the
smoothing effect of the constraint in the sus-
taining part of the note. The activations marked
with red bars are re-displyed in the bottom.

temporal constraint, the harmonic basis vector of A[2
note explains sustaining part of both A[1 and A[2 notes.
The temporal constraint reduces this type of error and,
in turn, helps to learn better basis vectors.

3 Experiments

3.1 Datasets

To evaluate our result, we employed Saarland Mu-
sic Data (SMD) [11]. SMD consists of piano record-
ings in both audio and MIDI recorded by Disklavier.
Disklavier records every mechanical movement of pi-
ano keys and pedal during the performance. Therefore,
we can obtain ground truth of intensity of each note in
the form of MIDI.

Since the ground truth for note intensity is in MIDI
velocity unit and the result of estimation is from the
activation H, we need to have a scale conversion so that
two data types are comparable. The relation between
MIDI velocity and the intensity was investigated in
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Fig. 6: Relation between MIDI velocity and note inten-
sity (E[ 5 note)

[12]. The research showed that the relation between
velocity and intensity is different depending on syn-
thesizer models. Also, the relation is affected by the
recording environment. Thus, a training set to learn the
mapping between note velocity and intensity should
be recorded in the same environment with the same
piano. Considering this issue, we grouped the dataset
into three subsets according to the recording date 1. For
each subset, we have conducted three-fold cross valida-
tion. While one fold is used as a test set, the other two
sets are used to learn the basis vectors and the mapping
parameters between ground truth MIDI velocity and
estimated note intensity. Note that although we have
different experimental settings from those in [3], the
sum of the subset covers the whole test set used in [3].

In addition to SMD, we used a monophonic note scale
data for basis vector learning. The scale covers 88 keys
with 12 different MIDI velocity from 10 to 120 for each
key. The data was synthesized with Synthogy Ivory II
Yamaha C7 samples in 440Hz-stretched tuning.

3.2 Evaluation Methods

We first learn the basis matrix by one of the four strate-
gies. Then, we performed the note intensity estimation
for the training set and obtained the mapping param-
eters for each pitch by comparing estimated note in-
tensities and the ground truth MIDI velocity values
as shown in Figure 6. Then we performed the note
intensity estimation for the test set and convert them

16 Bach recordings in 20090916, 13 Chopin recordings in
20100611 and the 15 other recordings in 20090916 where the eight
digit numbers mean a recording date in form of yyyymmdd (year-
month-day).

to MIDI velocities using the intensity-to-MIDI veloc-
ity mapping. We kept the same NMF settings in both
training and test stages.

We used two types of metrics to measure the accuracy.
First, we calculated absolute difference in MIDI ve-
locity between ground truth value and mapped note
intensities

AE := |V
est

(n)�VGT(n)| (5)

where V

est

(n) is estimated MIDI velocity of nth note.

The other metric was mapping the ground truth MIDI
velocity back to the note intensity using the same map-
ping parameters and then calculating relative error of
intensity as follows:

RE := 100(%) ·

�����
I

0.3(n)� I

0.3
mapped GT(n)

I

0.3
mapped GT(n)

����� (6)

We used this metric to make our result comparable to
[3]. They scaled the note intensity, considering psy-
choacoustic perception of loudness. We followed the
same metric: spectral energy sum of power spectro-
gram to the power of 0.3, or linear spectrogram to the
power of 0.6.

4 Results and Discussion

Figure 7 shows the absolute error of four different
strategies for learning basis vectors. In strategy (a),
the harmonic-percussive model made a large error than
harmonic model if there was no harmonic constraint.
But when the harmonic constraint was applied, the error
decreased drastically. This means that it is not easy to
learn proper basis vectors in the harmonic-percussive
model if there is no harmonic constraint. Applying
harmonic constraint to the harmonic model made a
negative effect, because this makes the basis matrix ig-
nore the inharmonicity of the sound. Strategy (b) made
the largest error except for when using the harmonic-
percussive model without harmonic constraint. We
assume that the reason for high error is due to the dif-
ference in spectral characteristic of the monophonic
note scale and the test set, for example, different tuning
or timbre.

The best performance was made by strategy (c), which
learns the basis vectors from the monophonic note scale
and refines it with the training set. We can see that the
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Fig. 7: Result of note intensity estimation according
to the four basis vectors learning strategies and
the NMF modeling.

difference between strategy (a) and (c) using harmonic
model is slight. This means that the advantage of em-
ploying the monophonic note scale is only limited to
the harmonic-percussive model. Strategy (d) showed
a less precise performance than strategy (c), but better
than the others. This shows that strategy (d) can be an
alternative solution if there is no available training set
to update spectral basis vectors.

Figure 8 shows the effect of harmonic constraint, power
spectrogram and partial temporal constraint for the two
best NMF settings, strategy (c) and (d). This indicates

Fig. 8: Result of note intensity estimation when apply-
ing the power spectrogram and temporal con-
straint.

Composer Piece Proposed Ewert
Mean
Abs

STD
Abs

Mean
Rel%

STD
Rel%

Mean
(%)

STD
(%)

Bach BWV849-01* 2.6 3.3 6.3 8.2 9.3 5.3
Bach BWV849-02 2.1 2.7 5.5 7.5 9.3 5.5
Bach BWV871-01 1.5 2.1 3.9 6.9 11 6.2
Bach BWV871-02 1.9 2.6 4.4 5.1 7.7 5.1
Bach BWV875-01 1.9 2.5 4.3 4.7 13.9 6.7
Bach BWV875-02 1.8 2.5 4.6 8.7 8.3 4.9
Beethoven Op027No1-01 4.4 4.9 11.0 17.1 12.5 7.1
Beethoven Op027No1-02* 4.3 4.8 11.0 16.2 10.3 6.5
Beethoven Op027No1-03 4.0 6.2 12.3 41.6 13.6 7.3
Beethoven Op031No2-01 4.5 5.5 12.0 16.6 16.1 8.7
Beethoven Op031No2-02 4.3 4.7 10.3 12.1 27.2 14.5
Beethoven Op031No2-03 2.6 3.3 7.2 13.3 13.2 8.1
Brahms Op010No1* 5.6 6.7 13.8 22.9 13.8 7.3
Brahms Op010No2 5.5 6.7 12.8 23.0 13.6 7.9
Chopin Op010-03 5.0 5.3 14.6 20.5 25.2 13
Chopin Op010-04 3.7 4.6 11.8 30.5 25 13.2
Chopin Op026No1 4.1 5.4 14.6 39.1 22.6 13.2
Chopin Op026No2 7.4 7.6 23.6 38.0 23.6 14.2
Chopin Op028-01 3.7 4.2 11.7 19.0 22.9 11.4
Chopin Op028-03 3.1 2.9 9.5 11.5 19 12.2
Chopin Op028-04 4.7 4.0 15.3 14.4 19.5 11.6
Chopin Op028-11 3.7 3.9 10.8 12.3 18.8 9.1
Chopin Op028-15 5.0 4.6 13.9 17.6 18 9.2
Chopin Op028-17 6.6 6.9 24.5 47.4 22.1 10.7
Chopin Op029* 4.8 5.1 14.4 19.1 20.1 11.6
Chopin Op048No1 6.4 6.9 20.7 37.3 26 11.2
Chopin Op066 4.5 4.4 13.3 15.7 22.4 13.5
Haydn Hob017No4* 2.9 4.4 8.5 24.8 14.8 8.1
Rachman. Op039No1 4.9 6.8 14.2 30.1 15.5 9
Skryabin Op008No8 3.7 4.1 9.9 12.7 10.1 5.6
Liszt LectureDante 7.4 9.5 23.0 50.7 - -
Liszt S. 179 7.3 9.6 24.0 57.8 - -
Liszt S. 144-2 4.4 7.3 15.8 50.4 - -
Ravel Valse Nobles 5.1 7.0 15.5 39.0 - -
Average 4.3 5.1 12.6 23.3 16.8 9.3

Table 1: Result of note estimation of individual pieces.
The stars indicate pieces that have been used
to refine Ewert’s note intensity dictionary.

that using power spectrogram reduces the error and
applying partial temporal constraint had a slight but
positive effect.

Table 1 compares our results to those in [3] using the rel-
ative error of intensity. Overall, our proposed method
shows higher accuracy but lower precision than those
in [3]. The main reason for low precision is due to the
neglect of pedal effect. We did not consider the pedal
usage in the recording for initializing H. Therefore, the
piece with constant pedal usage like some of Chopin’s
works made a large error, while the piece with less
pedal usage such as Bach’s pieces made a less error.
Furthermore, sometimes soft notes were screened by
the preceding notes because of the pedal effect. There
are some notes with extremely low velocity, e.g. less
than 5 in MIDI velocity, which can make more than
1000 % relative error when combined with the pedal
effect. For example, in Chopin’s Op. 28-17 of SMD,
there are eleven note events that have MIDI velocity
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lower than 5, among 2072 entire note events. If we
exclude these notes, the standard deviation decreases
from 47.4 to 34.4.

We should note that since our mapping parameters
solely depend on the result of the same note inten-
sity estimation procedure on the training set, there are
some possibilities of making a bias. On the other hand,
[3] made a note intensity dictionary for mapping the
ground truth MIDI velocity to note intensity. The dictio-
nary was made by employing a training set that contains
single note events in several velocity values and refine
it with the five pieces in the test set, which are marked
in Table 1. Since SMD is published by one of the au-
thors, it is probable that they could reproduce single
note events in the same recording condition with SMD.
Therefore, we needs to be careful when comparing two
results directly. The definition of ground truth and stan-
dard methods for the evaluation are necessary to tackle
this task further, which was actually mentioned in [3]
as well. Also, we should admit that our system is lim-
ited because pre-aligned MIDI data must be provided.
On the other hand, Ewert’s parameteric model is more
robust to misalignment between score and audio.

5 Summary

In this paper, we have presented a novel method for
estimating note intensities from piano recordings. It is
based on a NMF framework for learning basis matrix
from a training set and estimating note intensities in
performance audio. We have examined various meth-
ods such as the harmonic-percussive modeling, the
harmonic constraint, employing a piano synthesizer for
learning basis matrix, the use of power spectrogram
and the partial temporal constraint. The evaluation re-
sults show an improvement compared to the previous
research. In the future, we plan to make our system
allow MIDI score that are not aligned to audio. Also
we will update the NMF model considering the pedal
effect.
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