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ABSTRACT
Singing voice synthesis is a generative task that involves not
only multidimensional controls of a singer model such as
phonetic modulation by lyrics and pitch control by music
score but also expressive elements such as breath sounds
and vibrato. Recently, end-to-end learning models based on
generative adversarial network (GAN) have drawn much
interest as it requires less domain-specific processing but pro-
vides high sound quality. When GAN is applied to the audio
domain, it entails several issues: the choice of audio repre-
sentation to generate, handling temporal continuity between
two adjacent outputs, and finding an effective loss metric for
the audio representation. In this paper, we propose a Korean
singing voice synthesis system that addresses the issues using
an auto-regressive algorithm that generates spectrogram with
the boundary equilibrium GAN objective. Through the qual-
itative test, we show the proposed methods are superior to
the original GAN objective and non-auto-regressive model.
We also show that our proposed method can render natural
expressions such as continuous pitch contours and breath
sounds.

Index Terms— singing voice synthesis, auto-regressive
model, boundary equilibrium GAN

1. INTRODUCTION

Singing Voice Synthesis (SVS) is a generative task that pro-
duces acoustic waveforms of singing given lyrics and melody
input. Many of state-of-the-art SVS systems are based on con-
catenative synthesis or statistical parametric methods such as
hidden Markov models. Concatenative synthesis can provide
high-quality sounds but it requires a large amount of audio
samples and analysis for seamless rendering [1, 2]. Statistical
parametric methods allow for more compact implementation
but they have multiple pipelines of processing modules [3].
Recently, end-to-end learning models based on deep neural
networks have achieved remarkable results in speech synthe-
sis [4, 5, 6], and this in turn has affected the development of
neural singing synthesis [7]. The deep neural network method
has advanced supporting diverse languages such as English
[7, 8], Korean [9, 10], and Japanese [11, 12].

Unlike speech synthesis, the duration of pitched sounds is
given from the music score in SVS. For example, score rep-

resentations such as piano roll provide a temporal guide to
render corresponding pitch and acoustics features. As a re-
sult, the score and rendered audio are well aligned to each
other. Leveraging this metrical synchronization, researchers
have attempted to generate vocoder parameters aligned with
the score input using conditional generative adversarial neu-
ral network (GAN) [8, 12]. In this work, we recast the prob-
lem as an image-to-image translation where the input is a 2D
time-pitch representation (e.g, piano roll) and the output is a
2D time-frequency representation [13]. That is, we use condi-
tional GAN to generate spectrogram rather than vocoder pa-
rameter.

A fundamental issue in the image-based approach when
applied to the audio domain is that the model can span only a
short audio segment (e.g., several hundreds of audio frames)
and therefore successively generated segments can be discon-
tinuous over time. To address this problem, we propose an
auto-regressive conditional GAN which uses spectrogram in
a previous time step as input to produce spectrogram in the
current time step. In addition, we apply boundary equilibrium
GAN (BEGAN) to achieve stable training of the model and
enhance the quality of generated output [14]. Through listen-
ing test, we show that the proposed method is generally supe-
rior to the original GAN and non-auto-regressive settings.

2. RELATED WORK

The proposed system is based on modules from speech syn-
thesis and image generation. Recently, end-to-end speech
synthesis based on auto-regressive methods such as Tacotron
and Deep Voice outperformed concatenative synthesis [4, 5,
15]. Many of SVS systems followed the advance of speech
synthesis systems because both systems share the text-to-
voice transformation [8, 9, 10, 11, 12]. In image generation,
many systems have been proposed for high quality image
generation and, among others, GANs have shown superior
performances [16, 17]. Several SVS systems adopted GANs
to generate high-quality acoustic features [8, 10, 12].

An important issue in applying GANs to the audio do-
main is the choice of acoustic representations to generate the
final waveforms. Hono et al. and Chandra et al. used off-the-
self vocoders to obtain reliable sound quality [8, 12]. Lee et
al. generated mel-spectrogram and then transform it to linear



Fig. 1. Overview of the proposed singing voice synthesis system. Ls and Lp are the length of the generated spectrogram and
the previous spectrogram, respectively. D1 and D2 are embedding dimensions for pitch and phoneme, respectively. Ds is the
number of frequency bins of the spectrograms.

spectrogram using a super-resolution network in a more end-
to-end fashion [10]. In this paper, we directly generate lin-
ear spectrograms and show the possibility. Another issue in
training GANs is the choice of loss metrics, which affects the
stability in balancing between the generator and the discrimi-
nator and in turn better quality of the generated output. In this
paper, we adopt BEGAN loss [14] and show that it outper-
forms the original GAN loss when they are used to generate
linear spectrogram.

3. PROPOSED SYSTEM

3.1. Overall Processing

Figure 1 illustrates the overview of the proposed system. It
generates spectrogram with Ls frames andDs frequency bins
from a pitch vector and a phoneme vector with Ls frames and
the previous spectrogram with Lp frames and Ds frequency
bins. The input vectors and the spectrograms have the same
frame rate. The pitch vector and the phoneme vector are sep-
arately embedded and concatenated as a single matrix with
the size of Ls × (D1 +D2). We applied the domain encoder
and decoder to generate hidden-layer outputs with the size of
Ls×Ds andLp×Ds from the pitch/phoneme vector and from
the previous spectrogram. Two hidden-layer outputs are con-
catenated and followed by a U-Net to generate spectrogram
[18]. In training phase, the previous spectrogram is taken from
the ground truth spectrogram before Lp frame but, in test
phase, it is from the last Lp frame of the previously generated
spectrogram. Finally, we used the Griffin-Lim algorithm to
reconstruct phase information and generate waveforms [19].
The discriminator that takes the generated spectrogram and
the ground-truth spectrogram is trained using pixel-wise L1
loss and the BEGAN loss.

3.2. Input Processing

Our system uses score and text information to generate
singing voice. A single note in a score contains pitch and
duration information and it is converted into a vector. The
duration from the vector is converted to have the same length
as spectrogram in time. The pitch range is determined by
the minimum and maximum pitch values in the dataset.
We extracted phonemes from text information using Korean
grapheme-to-phoneme algorithm [20]. Korean phonemes can
be divided into onset, nucleus and coda and we located onset
and coda at the first and the last frames of a note [10]. Nu-
cleus represents voiced sound and thus it is elongated to be
proportion to the length of note.

We sampled audio in 22050Hz and applied pre-emphasis
with 0.97 filter coefficient to it. We computed spectrograms
using 1024-point fast Fourier transform and compressed them
in dB and normalized the scale to use a hyperbolic tangent
nonlinearity. We scaled the range to [-0.8, 0.8] instead of [-
1.0, 1.0] because we found that it helps allowing outliers and
generating envelope closer to the ground truth [21].

3.3. Domain Encoder/Decoder

We use score vectors, text vectors and previous audio spectro-
gram as input to generate current spectrogram. Concatenating
the different domains of data is not appropriate to use con-
volution kernels in the following U-Net. Therefore, we add a
domain encoder and decoder to convert the different domains
of data into a unified representation with a similar level of
abstraction. Figure 2 shows how the domain encoder and de-
coder are converted to a hidden-layer representation and the
concatenation are to generate the spectrogram via the U-Net.
The domain decoder consists of one fully connected layer and



Fig. 2. The workflow of the domain encoder and decoder.

two 1D convolutional layers with ReLU activation function.
The domain encoder consists of two 1D convolutional layers
with ReLU activation function. They process inputs frame-
wise and both structures are inspired from [15].

3.4. U-Net

U-Net has recently shown superior performance as a spectro-
gram generator in singing voice separation [22, 23]. In our
system, the U-Net converts the outputs of the domain en-
coder/decoder to spectrogram. The encoder of the U-Net has
striding convolution kernels instead of max-pooling referring
to deep convolutional GAN (DCGAN) [17]. Each convolution
layer in the encoder is down-sampled to the half in size except
for the first layer and every layers use a LeakyReLU activation
function. In the decoder of the U-Net, each convolution layer
is up-sampled to the double in size using transposed convo-
lution except for the last layer and every layer use an ReLU
activation function. The first layer of the U-Net down-samples
its input by 4 × 2 and the last layer up-samples its input by
3 × 2 so that the U-Net generates current spectrogram from
the previous spectrogram in time.

3.5. Discriminator

BEGAN uses an auto-encoder for discriminator [14]. While
the original GAN matches the distributions between real and
generated samples directly, BEGAN balances discriminator
and generator using the auto-encoder loss. This allows more
stable training. More specifically, BEGAN relaxes the equi-
librium of the auto-encoder loss using a hyper-parameter γ ∈
[0, 1] defined as:

γ =
E[L(G(x))]
E[L(y)]

(1)

where y is a real sample, G(x) is a generated sample, and L
is the reconstruction error of the auto-encoder. Lower values
of γ put more weight on auto-encoding real samples. Thus it
provides higher quality but lower diversity in generated sam-
ples. On the other hand, higher values of γ provides higher
diversity but lower quality. The loss functions of discrimina-
tor and generator are defined as: LD = L(y)− ktL(G(x))

LG = L(G(x)) + |y −G(x)|
kt+1 = kt + λ(γL(y)− L(G(x)))

(2)

where λ works as a learning rate and kt is an updating pa-
rameter that maintains equation 1. In our setting, x is a sam-
ple from the domain encoder/decoder output and y is a sam-
ple from ground truth spectrogram. Note that we add the L1
loss to the generator loss (LG) to reflect the pixel distribu-
tion between the generated spectrogram and the ground truth.
We used stacks of convolutional layers and exponential linear
units in the auto-encoder, following the configuration in [14].

4. EXPERIMENTS

4.1. Dataset

We collected our own dataset due to the absence of open
datasets for Korean singing voice synthesis. The dataset is
composed of 50 Korean children songs and they are recorded
by one professional female singer. Each song is recorded in
two separate keys and the difference between keys are range
from 3 to 5 semitones. The total duration of the recordings is
about 2 hours and 38 minutes. We also collected MIDI files
that contain melodic notes and text files that contains lyrics.
For each song, we manually aligned audio recordings to cor-
responding notes and syllables. We split the dataset into 41
songs for training, 1 song for validation and 8 songs for test.
We used the single song in the validation set to monitor the
loss and check the generation quality by listening while train-
ing the model.

4.2. Experiment Settings

We used the original GAN objective without auto-regressive
method as a baseline model. Its discriminator is based on DC-
GAN [17] and it predicts the real and generated spectrogram.
Given the baseline model, we changed the following factors:

• Application of the BEGAN objective in Section 3.5.
• Changes of γ in the BEGAN objective.
• Auto-regressive module in Section 3.3.

Table 1 compares the different settings. In the five models,
the network configurations are fixed except the settings. We
used the Adam optimizer [24] for both the generator and the
discriminator with β1 = 0.5 and β2 = 0.999. The learning rate
starts from 10−4 and it is reduced by half in every 50 epochs.



Table 1. Compared models and the experiment settings.
Model Model 1 Model 2 Model 3 Model 4 Model 5

Type of GAN Original GAN Original GAN BEGAN BEGAN BEGAN
γ in BEGAN - - 1.0 1.0 0.7

Auto-regressive No Yes No Yes Yes

Table 2. Qualitative evaluation results in MOS.
Model Pronunciation Acc. Sound Quality Naturalness

Model 1 2.267 ± 0.988 1.991 ± 0.826 2.099 ± 1.021
Model 2 2.052 ± 0.993 1.896 ± 0.876 2.099 ± 1.095
Model 3 3.070 ± 1.003 2.788 ± 0.924 2.867 ± 1.045
Model 4 3.038 ± 1.057 2.965 ± 0.955 3.122 ± 1.074
Model 5 2.646 ± 1.021 2.377 ± 0.904 2.519 ± 0.997

Reconstruction 4.681 ± 0.645 4.333 ± 0.713 4.600 ± 0.717
Ground Truth 4.780 ± 0.564 4.701 ± 0.656 4.762 ± 0.582

4.3. Evaluation
4.3.1. Qualitative evaluation
We evaluated the results by a listening test. We segmented the
test set into 15 examples by removing silence and repeating
parts. We included not only the generated samples from the
five models but also a reconstructed sample and the ground
truth sample. The reconstructed sample was obtained di-
rectly from the ground truth spectrogram via the Griffin-Lim
algorithm. 23 participants evaluated the results with Mean
Opinion Score (MOS) in three criteria (pronunciation accu-
racy, sound quality, and naturalness) [10]. The participants
are graduate students working on speech or singing voice
research.

The MOS results are shown in Table 2. Compared to
the original GAN models (model 1 and 2), BEGAN models
(model 3 and 4) have significantly higher scores in all of
three criteria. Between the two BEGAN models, the auto-
regressive method (model 4) has higher scores than the non-
auto-regressive method (model 3) except for pronunciation
accuracy. To investigate the results further, we conducted a
paired t-test between model 3 and 4. The obtained p-values
for pronunciation accuracy, sound quality and naturalness
are 0.5707, 0.0007, and 0.0001, respectively. This indicates
that the difference in pronunciation accuracy between two
models are statistically insignificant whereas those in sound
quality and naturalness are statistically significant. There-
fore, we can conclude that the auto-regressive method gener-
ally helps improving the quality of singing voice synthesis.
Between the two original GAN models, however, the auto-
regressive one (model 2) shows worse performance than the
non-auto-regressive one (model 1). This might be because
the auto-regressive model allows the low quality of generated
spectrogram from the previous time to adversely affect the
generation in the current time. The result for model 5 shows
that the lower γ value leads to lower quality unlike in [14].
This might be because our setting includes the additional L1
loss term and it gains relatively more weight than L(G(x))
for lower γ in the generator loss.

While the proposed method (model 4) improves the over-
all performance, it still has limitations, for example, chorus

Fig. 3. The ground truth and generated spectrograms of model
3 and model 4.

effect in sound quality, incorrect pronunciation and other arti-
facts1. We suspect that the chorus effect is partly from the the
Griffin-Lim algorithm, and incorrect pronunciation and other
artifacts are from unseen pairs of a note and phonemes in the
test set, in other words, the training set is not sufficient to
cover all possible combinations of notes and phonemes.

4.3.2. Spectrogram analysis
We inspect the generated spectrogram further to validate the
proposed method. Part A in Figure 3 compares the breath
sound of the ground truth and the generated spectrograms
from model 3 and 4. It shows that the both models can gen-
erate the breath sound which may come from the routine of
the singer. This is possible only when they learn temporal
context well in the audio recording. Between the two models,
the auto-regressive one (model 4) has more natural formant
shapes. In addition, Part B shows that the auto-regressive
method enables the model to generate continuous spectro-
gram without abrupt changes in harmonic tone generation.

5. CONCLUSION

We proposed Korean singing voice synthesis based on auto-
regressive boundary equilibrium GAN. We showed the pro-
posed methods are superior to the original GAN and non-
auto-regressive model. For future work, we plan to increase
the volume of the dataset for more reliable training of the
model and also find more compact audio representations to
improve the sound quality.
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